

Today

- Ray Casting
- Ray-Plane Intersection
- Ray-Sphere Intersection
- Point in Polygon
- Ray Tracing
- Recursive Ray Tracing
- Distribution Ray Tracing

Durer's Ray Casting Machine

- Albrecht Durer, $16^{\text {th }}$ century

Ray Representation?

- Two vectors:
- Origin
- Direction (normalized is better)
- Parametric line (explicit representation)

Explicit vs. Implicit?

- Ray equation is explicit $\quad \mathrm{P}(\mathrm{t})=\mathrm{R}_{\mathrm{o}}+\mathrm{t} * \mathrm{R}_{\mathrm{d}}$
- Parametric
- Generates points
- Harder to verify that a point is on the ray
- Plane equation is implicit $H(P)=n \cdot P+D=0$
- Solution of an equation
- Does not generate points
- Verifies that a point is on the plane

3D Plane Representation?

- Plane defined by
$-\mathrm{P}_{\mathrm{o}}=(\mathrm{x}, \mathrm{y}, \mathrm{z})$
$-\mathrm{n}=(\mathrm{A}, \mathrm{B}, \mathrm{C})$
- Implicit plane equation
$-\mathrm{H}(\mathrm{P})=\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}+\mathrm{D}=0$
$=n \cdot P+D=0$

- Point-Plane distance?
- If n is normalized, distance to plane, $\mathrm{d}=\mathrm{H}(\mathrm{P})$
-d is the signed distance!

Ray-Plane Intersection

- Intersection means both are satisfied
- So, insert explicit equation of ray into implicit equation of plane \& solve for t

Normal

- For shading
- diffuse: dot product between light and normal
- Normal is constant

Ray-Triangle Intersection

- Use barycentric coordinates:
$-\mathrm{P}(\alpha, \beta, \gamma)=\alpha \mathrm{a}+\beta \mathrm{b}+\gamma \mathrm{c}$ with $\alpha+\beta+\gamma=1$
- If $0<\alpha<1 \quad \& \quad 0<\beta<1 \quad \& \quad 0<\gamma<1$ then the point is inside the triangle!

Using Cramer's Rule...

- Used to solve for one variable at a time in system of equations

$$
\begin{aligned}
& \beta=\frac{\left|\begin{array}{ccc}
a_{x}-R_{o x} & a_{x}-c_{x} & R_{d x} \\
a_{y}-R_{o y} & a_{y}-c_{y} & R_{d y} \\
a_{z}-R_{o z} & a_{z}-c_{z} & R_{d z}
\end{array}\right|}{|A|} \gamma=\frac{\left|\begin{array}{lll}
a_{x}-b_{x} & a_{x}-R_{o x} & R_{d x} \\
a_{y}-b_{y} & a_{y}-R_{o y} & R_{d y} \\
a_{z}-b_{z} & a_{z}-R_{o z} & R_{d z}
\end{array}\right|}{|A|} \begin{array}{ll}
\left|\begin{array}{lll}
a_{x}-b_{x} & a_{x}-c_{x} & a_{x}-R_{o x} \\
a_{y}-b_{y} & a_{y}-c_{y} & a_{y}-R_{o y} \\
a_{z}-b_{z} & a_{z}-c_{z} & a_{z}-R_{o z}
\end{array}\right| & \begin{array}{c}
\mid \text { denotes the } \\
\text { determinant }
\end{array} \\
t & |A|
\end{array} \begin{array}{c}
\text { Can be copied } \\
\text { mechanically } \\
\text { into code }
\end{array}
\end{aligned}
$$

How Do We Compute α, β, γ ?

- Ratio of opposite sub-triangle area to total area
$-\alpha=A_{a} / \mathrm{A} \quad \beta=\mathrm{A}_{\mathrm{b}} / \mathrm{A} \quad \gamma=\mathrm{A}_{\mathrm{c}} / \mathrm{A}$
- Use signed areas for points outside the triangle

Sphere Representation?

- Implicit sphere equation
- Assume centered at origin (easy to translate) $-\mathrm{H}(\mathrm{P})=\mathrm{P} \cdot \mathrm{P}-\mathrm{r}^{2}=0$

Ray-Sphere Intersection

- Insert explicit equation of ray into implicit equation of sphere $\&$ solve for t

Ray-Sphere Intersection

- Quadratic: $\mathrm{at}^{2}+\mathrm{bt}+\mathrm{c}=0$
$-\mathrm{a}=1 \quad$ (remember, $\left\|\mathrm{R}_{\mathrm{d}}\right\|=1$)
$-\mathrm{b}=2 \mathrm{R}_{\mathrm{d}} \cdot \mathrm{R}_{\mathrm{o}}$
$-\mathrm{c}=\mathrm{R}_{\mathrm{o}} \cdot \mathrm{R}_{\mathrm{o}}-\mathrm{r}^{2}$
- with discriminant $d=\sqrt{b^{2}-4 a c}$
- and solutions $\quad t_{ \pm}=\frac{-b \pm d}{2 a}$
- What does it mean if there are no solutions, 1 solution, or 2 solutions?

How Can We Add Shadows?

Qualitative Refraction

From "Color and Light in Nature" by Lynch and Livingston

Refraction \& the Sidedness of Objects

- Make sure you know whether you're entering or leaving the transmissive material:

- What about intersecting transparent objects?

Questions?

Total Internal Reflection

Today

- Ray Casting
- Ray Tracing
- Recursive Ray Tracing
- Distribution Ray Tracing

Ray Tracing Algorithm Analysis

- Ray casting
- Lots of primitives
- Recursive
- Distributed Ray Tracing Effects
- Soft shadows
- Anti-aliasing
- Glossy reflection
- Motion blur
cost \approx height * width *

cost	\approx height ${ }^{*}$ width
	num primitives $*$
intersection cost $*$	

size of recursive ray tree * num shadow rays * num supersamples * num supersamples
num glossy rays * num temporal samples * num focal samples *

- Depth of field

Reading for Tuesday 3/13:

