Ray Tracing

Today

- Ray Casting
 - Ray-Plane Intersection
 - Ray-Sphere Intersection
 - Point in Polygon
- Ray Tracing
- Recursive Ray Tracing
- Distribution Ray Tracing

Durer's Ray Casting Machine • Albrecht Durer, 16th century

Ray Representation?

- Two vectors:
 - Origin
 - Direction (normalized is better)
- Parametric line (*explicit* representation)

3D Plane Representation?

H(p) = d > 0

normal

H(p) = d < 0

- Plane defined by
- $-P_{o} = (x,y,z)$
 - -n = (A,B,C)
- Implicit plane equation

$$- H(P) = Ax+By+Cz+D = 0$$

= $n \cdot P + D = 0$

- Point-Plane distance?
 - If n is normalized, distance to plane, d = H(P)
 - d is the signed distance!

Explicit vs. Implicit?

- Ray equation is explicit $P(t) = R_0 + t * R_d$
 - Parametric
 - Generates points
 - Harder to verify that a point is on the ray
- Plane equation is implicit $H(P) = n \cdot P + D = 0$
 - Solution of an equation
 - Does not generate points
 - Verifies that a point is on the plane

Ray-Plane Intersection

- · Intersection means both are satisfied
- So, insert explicit equation of ray into implicit equation of plane & solve for t

Additional Housekeeping

• Verify that intersection is closer than previous

$$P(t) \le t_{current}$$

• Verify that it is not out of range (behind eye)

Normal

- · For shading
 - diffuse: dot product between light and normal $\,$
- · Normal is constant

Ray-Triangle Intersection

- Use barycentric coordinates:
 - $-P(\alpha, \beta, \gamma) = \alpha a + \beta b + \gamma c$ with $\alpha + \beta + \gamma = 1$
 - If $0 < \alpha < 1$ & $0 < \beta < 1$ & $0 < \gamma < 1$ then the point is inside the triangle!

How Do We Compute α , β , γ ?

- Ratio of opposite sub-triangle area to total area $-\alpha = A_a/A$ $\beta = A_b/A$ $\gamma = A_c/A$
- Use signed areas for points outside the triangle

Using Cramer's Rule...

• Used to solve for one variable at a time in system of equations

$$\beta = \frac{\begin{vmatrix} a_x - R_{ox} & a_x - c_x & R_{dx} \\ a_y - R_{oy} & a_y - c_y & R_{dy} \\ a_z - R_{oz} & a_z - c_z & R_{dz} \end{vmatrix}}{|A|} \qquad \gamma = \frac{\begin{vmatrix} a_x - b_x & a_x - R_{ox} & R_{dx} \\ a_y - b_y & a_y - R_{oy} & R_{dy} \\ a_z - b_z & a_z - R_{oz} & R_{dz} \end{vmatrix}}{|A|}$$

$$t = \frac{\begin{vmatrix} a_x - b_x & a_x - c_x & a_x - R_{ox} \\ a_y - b_y & a_y - c_y & a_y - R_{oy} \\ a_z - b_z & a_z - C_z & a_z - R_{oz} \end{vmatrix}}{|A|}$$

$$Can be copied mechanically into code$$

Sphere Representation?

- · Implicit sphere equation
 - Assume centered at origin (easy to translate)
 - $-H(P) = P \cdot P r^2 = 0$

Ray-Sphere Intersection

 Insert explicit equation of ray into implicit equation of sphere & solve for t

$$\begin{split} P(t) &= R_o + t * R_d & H(P) = P \cdot P - r^2 = 0 \\ (R_o + t R_d) \cdot (R_o + t R_d) - r^2 &= 0 \\ R_d \cdot R_d t^2 + 2 R_d \cdot R_o t + R_o \cdot R_o - r^2 &= 0 \\ \end{split}$$

Ray-Sphere Intersection

- Quadratic: $at^2 + bt + c = 0$ -a = 1 (remember, $||R_d|| = 1$) $-b = 2R_d \cdot R_o$
 - $-c = R_o \cdot R_o r^2$
- with discriminant $d = \sqrt{b^2 4ac}$
- and solutions $t_{\pm} = \frac{-b \pm d}{2a}$
- What does it mean if there are no solutions, 1 solution, or 2 solutions?

Today

- Ray Casting
- Ray Tracing
 - Shadows
 - Reflection
 - Refraction
- Recursive Ray Tracing
- Distribution Ray Tracing

Today

- Ray Casting
- · Ray Tracing
- Recursive Ray Tracing
- Distribution Ray Tracing

Today

· Ray Casting · Ray Tracing

• Recursive Ray Tracing • Distribution Ray Tracing

- Antialiasing (getting rid of jaggies)

- Soft shadows

- Glossy reflection - Motion blur

- Depth of field (focus)

