
1

Real-Time
Shadows

Last Time?
x'

ω'

L(x',ω') = E(x',ω') + ∫ρx'(ω,ω')L(x,ω)G(x,x')V(x,x') dA
• The Rendering Equation

• Progressive Radiosity
• Adaptive Subdivision
• Discontinuity Meshing
• Hierarchical Radiosity

Today
• Why are Shadows Important?
• Planar Shadows
• Projective Texture Shadows
• Shadow Maps
• Shadow Volumes

Why are Shadows Important?
• Depth cue
• Scene

Lighting
• Realism
• Contact

points

Shadows as a Depth Cue For Intuition about Scene Lighting
• Position of the light (e.g. sundial)
• Hard shadows vs. soft shadows
• Colored lights
• Directional light vs. point light

2

Today
• Why are Shadows Important?
• Planar Shadows
• Projective Texture Shadows

– Shadow View Duality
– Texture Mapping

• Shadow Maps
• Shadow Volumes

Cast Shadows on Planar Surfaces
• Draw the object primitives a second time,

projected to the ground plane

Limitations of Planar Shadows
• Does not produce self-shadows, shadows cast on

other objects, shadows on curved surfaces, etc.

Shadow/View Duality
• A point is lit if it

is visible from
the light source

• Shadow
computation
similar to view
computation

Texture Mapping
• Don't have to represent everything with geometry

Fake Shadows using Projective Textures

• Separate obstacle and receiver
• Compute b/w image of obstacle from light
• Use image as projective texture for each receiver
Image from light source BW image of obstacle Final image

Figure from Moller & Haines “Real Time Rendering”

3

Projective Texture Shadow Limitations

• Must specify occluder & receiver
• No self-shadows
• Resolution

Figure from Moller & Haines “Real Time Rendering”

Questions?

Today
• Why are Shadows Important?
• Planar Shadows
• Projective Texture Shadows
• Shadow Maps
• Shadow Volumes

Shadow Maps
• In Renderman

– (High-end production software)

Shadow Mapping
• Texture mapping with

depth information
• Requires 2 passes

through the pipeline:
– Compute shadow

map (depth from
light source)

– Render final image,
check shadow map
to see if points are
in shadow

Foley et al. “Computer Graphics Principles and Practice”

Shadow Map Look Up
• We have a 3D point (x,y,z)WS

• How do we look up
the depth from the
shadow map?

• Use the 4x4
perspective projection
matrix from the light
source to get (x',y',z')LS

• ShadowMap(x',y') < z'?
Foley et al. “Computer Graphics Principles and Practice”

(x,y,z)WS(x',y',z')LS

4

Limitations of Shadow Maps
1. Field of View

2. Bias (Epsilon)

3. Aliasing

1. Field of View Problem
• What if point to

shadow is outside
field of view of
shadow map?
– Use cubical

shadow map
– Use only

spot lights!

2. The Bias (Epsilon) Nightmare
• For a point visible

from the light source
ShadowMap(x’,y’) ≈ z’

• How can we
avoid erroneous
self-shadowing?
– Add bias (epsilon)

2. Bias (Epsilon) for Shadow Maps
ShadowMap(x’,y’) + bias < z’
Choosing a good bias value can be very tricky

Correct image Not enough bias Way too much bias

3. Shadow Map Aliasing
• Under-sampling of the shadow map
• Reprojection aliasing – especially bad when the

camera & light are opposite each other

3. Shadow Map Filtering
• Should we filter the depth?

(weighted average of neighboring depth values)
• No... filtering depth is not meaningful

5

3. Percentage Closer Filtering
• Instead filter the result of the test

(weighted average of comparison results)
• But makes the bias issue more tricky

3. Percentage Closer Filtering
• 5x5 samples
• Nice antialiased

shadow
• Using a bigger

filter produces
fake soft
shadows

• Setting bias
is tricky

Projective Texturing + Shadow Map

Eye’s ViewLight’s View Depth/Shadow Map

Images from Cass Everitt et al.,
“Hardware Shadow Mapping”

NVIDIA SDK White Paper

Shadows in Production
• Often use

shadow maps
• Ray casting as

fallback in case
of robustness
issues

Hardware Shadow Maps
• Can be done with hardware texture mapping

– Texture coordinates u,v,w generated using 4x4 matrix
– Modern hardware permits tests on texture values

Questions?

6

Today
• Why are Shadows Important?
• Planar Shadows
• Projective Texture Shadows
• Shadow Maps
• Shadow Volumes

– The Stencil Buffer

Stencil Buffer
• Tag pixels in one rendering pass to

control their update in subsequent
rendering passes
– "For all pixels in the frame buffer" →

"For all tagged pixels in the frame buffer"

• Can specify different rendering
operations for each case:
– stencil test fails
– stencil test passes & depth test fails
– stencil test passes & depth test passes

frame buffer

depth buffer

stencil buffer

Stencil Buffer – Real-time Mirror
• Clear frame, depth & stencil buffers
• Draw all non-mirror geometry to

frame & depth buffers
• Draw mirror to stencil buffer, where

depth buffer passes
• Set depth to infinity, where stencil

buffer passes
• Draw reflected geometry to

frame & depth buffer, where
stencil buffer passes

See NVIDIA's stencil buffer tutorial
http://developer.nvidia.com

also discusses blending, multiple
mirrors, objects behind mirror, etc…

without
stencil
buffer:

reflected
geometry

Shadow Volumes
• Explicitly represent the volume

of space in shadow
• For each polygon

– Pyramid with point
light as apex

– Include polygon to cap
• Shadow test similar

to clipping

Shadow Volumes
• If a point is inside a shadow

volume cast by a particular light,
the point does not receive any
illumination from that light

• Cost of naive
implementation:
#polygons * #lights

Shadow Volumes
• Shoot a ray from the eye to

the visible point
• Increment/decrement a

counter each time we
intersect a shadow
volume polygon
(check z buffer)

• If the counter ≠ 0,
the point is
in shadow

+1-1

+1

7

Shadow Volumes w/ the Stencil Buffer
Initialize stencil buffer to 0
Draw scene with ambient light only
Turn off frame buffer & z-buffer updates
Draw front-facing shadow polygons

If z-pass → increment counter
Draw back-facing shadow polygons

If z-pass → decrement counter
Turn on frame buffer updates
Turn on lighting and

redraw pixels with
counter = 0

0
+2

+1

If the Eye is in Shadow...
• ... then a counter of 0 does

not necessarily mean lit
• 3 Possible Solutions:

1. Explicitly test eye
point with respect
to all shadow volumes

2. Clip the shadow
volumes to the
view frustum

3. "Z-Fail" shadow
volumes

-1
0

-1

1. Test Eye with Respect to Volumes
• Adjust initial

counter value

Expensive

0
+1

0

+1

2. Clip the Shadow Volumes
• Clip the shadow volumes to the view frustum

and include these new polygons
• Messy CSG

3. "Z-Fail" Shadow Volumes
Start at infinity

...

Draw front-facing shadow polygons
If z-fail, decrement counter

Draw back-facing shadow polygons
If z-fail, increment counter

...
0

+1

0

3. "Z-Fail" Shadow Volumes

0
+1

0

• Introduces problems
with far clipping plane

• Solved by clamping the
depth during clipping

8

Optimizing Shadow Volumes
• Use silhouette edges only (edge where

a back-facing & front-facing polygon meet)

L

A

Limitations of Shadow Volumes
• Introduces a lot of new geometry
• Expensive to rasterize long skinny triangles
• Limited precision of stencil buffer (counters)

– for a really complex scene/object,
the counter can overflow

• Objects must be watertight to use silhouette trick
• Rasterization of polygons sharing an edge

must not overlap & must not have gap

Questions?
• From a previous quiz: Check the boxes to indicate the

features & limitations of each technique

Reading for
Friday 3/23:

Reading for
Today:

Veach & Guibas
"Optimally Combining

Sampling Techniques for
Monte Carlo Rendering"

SIGGRAPH 95

Lokovic and Veach
Deep Shadow Maps
SIGGRAPH 2000

Local illumination onlyShadows are important!

Sampling the light source Sampling the BRDF

