# Monte Carlo Rendering



#### Today

- Does Ray Tracing Simulate Physics?
- Monte-Carlo Integration
- Sampling
- Advanced Monte-Carlo Rendering

## Does Ray Tracing Simulate Physics?

- No.... traditional ray tracing is also called *"backward" ray tracing*
- In reality, photons actually travel from the light to the eye



## Forward Ray Tracing

- Start from the light source - But very, very low probability to reach the eye
- What can we do about it?
  - Always send a ray to the eye.... still not efficient











## The Rendering Equation

- Clean mathematical framework for light-transport simulation
- At each point, outgoing light in one direction is the integral of incoming light in all directions multiplied by reflectance property

#### Today

- Does Ray Tracing Simulate Physics?
- Monte-Carlo Integration – Probabilities and Variance
  - Analysis of Monte-Carlo Integration
- Sampling
- Advanced Monte-Carlo Rendering

## Monte-Carlo Computation of $\pi$

- Take a random point (x,y) in unit square
- Test if it is inside the 1/4 disc
  - $\text{ Is } x^2 + y^2 < 1?$
- Probability of being inside disc?
  - area of  $\frac{1}{4}$  unit circle / area of unit square =  $\frac{\pi}{4}$



- $\pi \approx 4$  \* number inside disc / total number
- The error depends on the number or trials

#### Convergence & Error

- Let's compute 0.5 by flipping a coin:
  - 1 flip: 0 or 1
  - $\rightarrow$  average error = 0.5
  - 2 flips: 0, 0.5, 0.5 or 1  $\rightarrow$  average error = 0. 25
  - 4 flips: 0 (\*1),0.25 (\*4), 0.5 (\*6), 0.75(\*4), 1(\*1)
  - $\rightarrow$  average error = 0.1875
- Unfortunately, doubling the number of samples does not double accuracy



#### Review of (Discrete) Probability

- Random variable can take discrete values x<sub>i</sub>
- Probability  $p_i$  for each  $x_i$
- $0 < p_i < 1, \ \Sigma p_i = 1$ • Expected value  $E(x) = \sum_{i=1}^n p_i x_i$
- Expected value of function of random variable
  f(x<sub>i</sub>) is also a random variable

$$E[f(x)] = \sum_{i=1}^{n} p_i f(x_i)$$

## Variance & Standard Deviation

- Variance  $\sigma^2$ : deviation from expected value
- Expected value of square difference

$$\sigma^2 = E[(x - E[x])^2] = \sum_i (x_i - E[x])^2 p_i$$

• Also

$$\sigma^2 = E[x^2] - (E[x])^2$$

• Standard deviation σ: square root of variance (notion of error, RMS)

#### Monte Carlo Integration

- Turn integral into finite sum
- Use *n* random samples
- As *n* increases...
  - Expected value remains the same
  - Variance decreases by n

- Standard deviation (error) decreases by 
$$\frac{1}{\sqrt{n}}$$

• Thus, converges with 
$$\frac{1}{L}$$



## Disadvantages of MC Integration

- Noisy
- Slow convergence
- Good implementation is hard
  - Debugging code
  - Debugging math
  - Choosing appropriate techniques
- Punctual technique, no notion of smoothness of function (e.g., between neighboring pixels)



#### Today

- Does Ray Tracing Simulate Physics?
- Monte-Carlo Integration
- Sampling - Stratified Sampling
  - Importance Sampling
- Advanced Monte-Carlo Rendering

## Domains of Integration

- Pixel, lens (Euclidean 2D domain)
- Time (1D)
- Hemisphere
  - Work needed to ensure uniform probability

## Example: Light Source

- We can integrate over surface *or* over angle
- But we must be careful to get probabilities and integration measure right!

Sampling the source uniformly source

Sampling the hemisphere uniformly hemisphere

## Stratified Sampling

- With uniform sampling, we can get unlucky E.g. all samples in a corner
- To prevent it, subdivide domain Ω into non-overlapping regions Ω<sub>i</sub>
  – Each region is called a stratum



- Take one random samples per  $\boldsymbol{\Omega}_i$ 

















## Today

- Does Ray Tracing Simulate Physics?
- Monte-Carlo Integration
- Sampling
- Advanced Monte-Carlo Rendering



# Ray Tracing

- Cast a ray from the eye through each pixel
- Trace secondary rays (light, reflection, refraction)

















#### • Reading for Tuesday (3/27)

Statistical Acceleration for Animated Global Illumination, Meyer & Anderson, SIGGRAPH 2006



• Reading for Friday (3/30)

Global Illumination using Photon Maps, Henrik Wann Jensen, Rendering Techniques 1996

