
Non-Photorealistic Experimentation
Jhon

Adams
Danny
Coretti

 
 

Abstract

Photo-realistic rendering
techniques provide an excellent method
for integrating stylized rendering into an
otherwise dominated field of computer
graphics world of trying to replicate the
real-world scenes is the prime objective.
Many of these techniques emulate the
drawings and paintings of artists and
provide excellent mock-ups of real
world artistic techniques. The trouble is
many of these techniques cannot be
implemented on commonly available
hardware to run in real-time. Through
our research and work implementing and
tweaking several NPR techniques, we
have explored the trade off between
precise detail and frame rate in order to
create aesthetically pleasing scenes
without sacrificing frame rates.

1 Introduction

1.1 Motivation

 Much of the research into NPR
techniques has focused thus far on
creating precise replications of real-
world artistic styles. These potentially
computationally heavy techniques have a
down side in that they are unable to be
rendered more than interactive rates, if
even that. Through reading several NPR
related papers, we decided to try and see
what kind of techniques could we
implement in real-time while sacrificing
the least possible amount of detail. Our
aim became to implement and combine
several commonly used NPR techniques
and tweak them to get the best frame
rates, while producing aesthetically
pleasing cartoon style images.

1.2 Related Work

 In the realm of cartoon and
painterly NPR techniques, there have
been numerous papers and
developments. One commonly used
technique is cell shading or toon
shading, where the shading of a model is
limited to a specific set of colors,
resulting in a banded, drawn shading
appearance. From there, we have looked
into several techniques involving artistic
brush stroke methods where a picture is
approximated by numerous “strokes”,
giving a painted look to a scene
[Hertzmann 2004]. There are also
several papers involving the creation of
accurate strokes along contours and
suggestive contours of a 3D model in
order to provide a representation of that
object as if it were hand drawn
[Goodwin et al. 2007; DeCarlo et al.
2004].

 Methods such as the Isophote
Distance [Goodwin et al. 2007] and
stroke based rendering [Hertzmann
2004] provided excellent results on their
techniques, but only at interactive rates.
Other techniques such as cell shading
can be easily done in real time and were
used to improve the overall appearance
of the resulting scenes.

2 Algorithm/Technique

2.1 Cell Shading

 To define the basis of our
experiment, we first wanted to
implement one form of the cell shading
technique. There are multiple versions
of this technique, involving everything
from the GPU hardware and predefined

 
 

2 

textures, to the main CPU and
procedurally generated textures.
Implementations of all of these methods
are readily available throughout the web.
The general procedure that is constant
throughout the variations in method is as
follows:

1. Compute the surface normal n of
each vertex point on the mesh.

2. Compute the dot product of the
normal with the view vector.

l is the light’s position and p is the
position of the vertex. The result of
subtracting the two is the view vector v.

3. The result of step 2 is the intensity of
the light at that point. This value is
multiplied by the vertex color stored in
the mesh data structure. The result is a
coordinate on the cell shading texture,
which is to be displayed at that point.

 Many methods of cell shading
involve the computation of one specific
color’s intensity values procedurally in
order to create the cell shading values
possible for a color. In our method we
implemented a 3D volumetric texture
representing a cell shaded model of the
RGB color space. Our implementation
creates a 3D texture with n samples of
color intensity at each point. We found
that by using 16 samples in the 0-255
color intensity range that the best
looking renderings could be achieved.
This however could be changed to allow
any arbitrary number of samples.

The computations to map all the
texture coordinates are O(n) and even
when calculated every frame create a
small impact to frame-rates.

2.2 Silhouettes, Contours, and
Suggestive Contours

 Our next step was to implement
silhouette and contour detection in order
to outline specific features along the
model to enhance the appearance that the
models are drawn. The algorithm for
detecting basic silhouette edges involves
finding edge crossings where on one side
of the edge a vertex is facing the camera,
and on the other it is away from the
camera. In mathematical terms this
means that a point is on the silhouette
when:

n is the normal of the vertex, and v, the
view vector, is the camera position, d,
minus the point position p. Therefore a
specific point is on the edge of a model
relative to the camera when its surface
normal is perpendicular to the camera’s
direction. Since Silhouette edges are the
global minima of the dot product
presented above, suggestive contours are
then the local minima. Using the
curvature of the surface along with the
derivatives of this curvature at each
point we were able to determine local
minima. Curvature values were
computed at load time by the mesh
library we utilized in our program
(Trimesh2).

More on how suggestive contours are
implemented.

Like the toon-shading, these values only
need to be computed if the camera
moves relative to the object, thereby
cutting down on some of the
recomputation time.

2.3 Stroke Thickness

 
 

3 

 Isophote distance, otherwise
known as stroke thickness [Goodwin et
al. 2007] provides a method of
emulating artistic strokes that define
depth and curvature of an object using
lines of varying thickness along contours
and suggestive contours. One of the
requirements for Isophote distance
drawing is to compute isophotes across
the mesh. An Isophote is defined as a
curve of constant light intensity. Thus it
is computed exactly as we computed cell
shading intensity, only lines are included
in a particular Isophote line only if they
have a particular intensity. Given an
Isophote of intensity r0 and a contour or
suggestive contour, the Isophote
distance, or stroke thickness is the image
space distance from a point p to an
Isophote curve. In our implementation
we approximate this distance using
formulas outlined in Goodwin et al.

Once this is calculated you then
draw the lines using a spine that lies
between the Isophote and the contour
line. This ensures that the line does not
go beyond the bounds of the mesh and
more accurately represents the model’s
shape. This spine line is created by
extending a vector from a contour point
p in the direction of the inward facing
surface normal at that point. Strokes are
then defined as quads along this spine
with a thickness defined by the Isophote
distance, clamped to a user defined
value.

2.4 Painterly Rendering

 The next concept we
implemented was the idea of stroke
based rendering. In Hertzmann’s paper
“Stroke Based Rendering”, we decided
to see if we could integrate and
experiment several painterly rendering
techniques. The one that we focused on

was based upon the idea of drawing
strokes in the direction of the gradient of
the image [Hertzmann 2002]. The basic
algorithm involved looking at the
curvature of a point’s neighbors and
choosing points with the highest change
in curvature. Then a line is drawn
between the two points with a color that
is the average of the neighbors of the
points. We experimented heavily with
this technique as it produced very poor
frame rates. The result from our
experimentation was an array of non-
depth-tested dots we affectionately
called “Gradient Dabs”.

 Based slightly on the technique
described above, the “Stroke Based
Rendering” that is actually implemented
is a much cruder version. For every point
on the mesh, the neighbor vertex farthest
away is chosen and a line is drawn
between the two. Special attention has
been paid so that no points will draw
lines to each other more than once,
creating a cross-hatched style in some
cases.

 A shading style is included,
although not painterly, that creates
“Curvature Lines”, connecting two
vertices of above average curvature that
are above each other. This creates strong
lines along the y axis of the mesh around
areas with strong curves.

3 Results

Once the toon shading was
calculated for a particular lighting setup,
it does not need to be recalculated. This
means that with toon shading, a mesh
will render at the same speed it did
without it. Only when the light is
constantly changing does the toon
shading create an impact of O(n) before
the mesh can be drawn.

 
 

4 

 The volumetric texture being
used for the cell shading worked out
very well but, as we learned toward the
end of the project, means that the cell
shading implementation cannot be used
under Microsoft Windows or even
Cygwin do to OpenGL being frozen at
version 1.1.

Calculating the contours of a
mesh was also significantly improved.
All previous implementations of
contours and suggestive contours ran at
only around 20 frames per second on the
machine used for testing. By
comparison, the optimizations that we
used to improve these computations
resulted in above 100 frames per second.

The curvature lines were by far
the most frame-rate friendly non-
photorealistic rendering style that we
experimented with as it did not affect the
frames per second in any significant
way. This is followed by the stroke
based rendering that requires n*2
vertices to be drawn to properly render.
To the techniques advantage, these
vertices only need to be calculated once.

The last NPR technique that was
experimented with, “Gradient Dabbing”,
resulted in sub-interactive frame-rates.
This technique only requires drawing n
vertices. The large dots that create the
dabbing style are expensive to draw. If
the size of the dots is even decreased by
half, the frame-rate increases ten-fold.

4 Conclusion

4.1 Discussion

We implemented a variety of
techniques and were able to combine
them to produce real-time frame rates.
In the case of painterly rendering,
rendering time was severely lowered.

4.2 Known Bugs and Limitations

 We had a lot of trouble getting
the Isophote distance stroke thickness
method to work properly. We currently
are computing stroke thickness properly
but have problems rendering along a
spine on the mesh. In this bug, lines
often jut out from the surface of the
mesh at regular intervals.

4.3 Work Distribution

 This project was completed over
20 days. We each worked in tandem
throughout the various features of the
project. Jhon completed Toon shading
and fixed Danny’s silhouette detection
code as we experimented with various
methods for their computation. Danny
wrote the base rendering engine and
integrated the mesh library, as well as
worked on painterly rendering and
silhouette detection by deciphering
papers. Both Danny and Jhon
experimented with NPR techniques
based on papers and on their own
intuition at whim. Only finished styles
and code have been included.

4.4 Future Work

 We believe that with more time
we could properly integrate more NPR
techniques into the program and create
scenes using multiple objects to render a
walkthrough scene. Our current code
allows such scenes but we have mainly
tested using single models of varying
polygon counts.

5. References

[1] Szymon, R., “Estimating Curvatures
and Their Derivatives on Triangle
Meshes”. Symposium on 3D Data
Processing, Visualization, and
Transmission. September 2004.

 
 

5 

[2] Goodwin, T., Vollick, I., Hertzmann,
A., “Isophote Distance: A Shading
Approach to Artistic Stroke Thickness”.
NPAR 2007.

[3] DeCarlo, D., Finkelstein, A., Szymon
R.,“Interactive Rendering of Suggestive
Contours with Temporal Coherence”.
NPAR June 2004.

[4] Hertzmann, A., “Stroke Based
Rendering”. SIGGRAPH 2002.

[5] Rusinkiewicz, S. “Trimesh2 Mesh
loading Library.” Mar. 2008
<http://www.cs.princeton.edu/gfx/proj/tr
imesh2/>

[6] Rusinkiewicz, S. “Suggestive
Contours Sample Code." Mar. 2008
http://www.cs.princeton.edu/gfx/proj/su
gcon/

