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Abstract

Based on a standard software ray-tracer with  
soft shadowing and glossy reflection capabilities,  
I  present  a  per-pixel  displacement  mapping  
algorithm.  This  algorithm  modifies  the  
intersection  routine  already  used  for  shadows  
and reflections and so they are preserved.  The 
algorithm relies on a distance map, which along 
with a normal map for lighting information, can 
be generated for each point in the displacement  
map  input.  The  distance  map  allows  efficient  
calculation  of  dynamic  sampling  of  the  
displacement map by an intersecting ray. As per-
pixel displacement mapping can be implemented 
in a modern GPU pixel  shader,  this  algorithm 
has many future possibilities.

1. Introduction

1.1 Motivation

Displacement  mapping  has  long  been  a 
general  method  of  mapping  an  object  with  a 
height field texture to render complex textures. 
This is  an alternative to bump-mapping,  which 
simply changes the normals on a surface to affect 
the  lightning,  giving  the  illusion  of  depth. 
Displacement mapping changes the actual depth 
of points on a surface. Usually, this is done by 
creating  many  small  triangles  (tessellating)  to 
represent the displacement  map on the surface. 
Per-pixel  displacement  mapping  is  often  more 
computationally  expensive  than  mesh 
tessellation,  as  well  as  more  exact  and  easily 
refineable.  Most  importantly  for  future 
applications, it can be implemented in the pixel 
shader of modern GPUs, where the tessellation 
method cannot.

1.2 Related Work

The  displacement  mapping  system presented 
in  this  paper  is  implemented  in  a  ray-tracing 
system based on the ray tracing system presented 
by Turner Whitted [1]  with distributed shadow 
and  reflection  samples  as  presented  by  Cook, 
Porter & Carpenter [2]. As only the intersection 
methods are modified, these algorithms maintain 
shadows  and  reflections  seamlessly  on 
displacement-mapped surfaces as well.

The  displacement-mapping  algorithm 
presented  is  based  on  both  AMD's  [3]  and 
nVidia's  [4]  papers  on  per-pixel  displacement 
mapping.  The  first  presents  extrusion  to  create 
bounding  boxes  for  displacement  map 
intersection. The second presents distance maps 
as a  solution for  undersampling.  Both of  these 
papers discuss implementation in hardware, but 
their  methods  are  easily  implemented  in 
software.  The  resulting  rendering  is  still 
relatively fast in software, as these algorithms are 
optimized for  the restricted environment  of the 
GPU pixel shader.

2. Data Structures

2.1 Height Map

The  height  map  is  essentially  the 
representation of the actual displacement map. It 
is a texture of floating-point values ranging from 
0 to 1, stored as a two-dimensional array. These 
values  represent  how  far  the  face  should  be 
displaced  at  that  point,  and  can  be  accessed 
directly, or interpolated for specific points on a 
face.  In  this  implementation,  the  values  are 
linearly interpolated for any given coordinates.



The  height  map  can  be  created  at  any 
resolution of at  least  2 in each dimension. The 
heights can be determined from a given texture 
file,  or  procedurally.  I  chose  in  my 
implementation to separate the dimensions of the 
face  and  the  depth  of  displacement  from  the 
height map, as this allows a single displacement 
map  to  be  applied  to  different  faces  using 
different  depths.  However,  this  requires  each 
individual  face  to  handle  its  own  normal  and 
distance map, as I describe below.

2.2 Normal Map

The normal map is very similar to the height 
map, and is created at the same resolution, but at 
each  position  stores  a  normalized  vector 
indicating the normal of the displacement map at 
that position. Originally, I created and stored the 
normal map with the displacement map, but as 
differing  depths  and  geometry  of  a  face  can 
change  the  normals,  I  found  it  necessary  to 
handle normals at  the individual faces so these 
dimensions can be accounted for.

Similarly  to  height  map  interpolation,  an 
interpolated  normal  can  be  accessed  at  any 
coordinate within the face. Using the normal map 
alone,  this  algorithm  could  easily  produce  a 
bump-mapped surface; the surface would appear 
to be perturbed due to lighting, as determined by 
surface normals, but it still would be flat.

The normal map can be either read in from a 
file with the height map, generated procedurally 
alongside the height map, or generated using a 
brute-force algorithm based on the defined height 
map.

2.3 Distance Map

A common problem in per-pixel displacement 
mapping  is  sampling  density.  Coarse  sampling 
can  result  in  missing  fine  or  sharp  details,  or 
missing the surface altogether. As a displacement 
map may contain sharp points, it is not simple to 
determine how finely the map must be sampled 
to adequately display the detail.

The  distance  map  is  presented  by  William 
Donnelly  [4]  as  a  solution  to  this  problem. 
Alongside  the  height  and  normal  maps,  a  3-
dimensional  distance  map  is  created.  At  each 
point  in  this  map,  the  shortest  distance  to  the 
height map is stored. When a ray intersects the 
displacement map, the point p where it intersects 
is queried on the distance map. This distance d is 
used  to  advance  the  sampling  of  the  ray.  The 
method works because the point  d' = p+d  must 
either be the closest point on the height map to p, 
or has not yet intersected the height map.

I originally created the distance map in each 
displacement  map  as  with  the  normal  map. 
However, as different face geometry can change 
the  relative  distances  between  points  on  the 
displacement map, the distance map must also be 
created for  each face,  and is  thus stored there. 
Also, I implemented distance map interpolation 
similarly  to  the  height  and  normal  maps, 
extended to 3 dimensions.

The  distance  map  can  be  read  from  a  file, 
procedurally  generated,  or  generated  using  the 
height map. The last method (as I implemented 
it)  results  in  some artifacts  with  certain  maps, 
however. At sharp changes in the height field, a 
portion of the interpolated height map can pass 
closer to  p than the points in the actual height 
map,  which  the  brute-force  generated  distance 
map  is  determined  from.  This  results  in  rays 
'missing'  the  height  map,  so  the  face  is  not 
rendered at those pixels.

2.4 Convex Hull Bounding Box

To prevent the unnecessary displacement-map 
calculation for rays that completely miss, as well 
as  to  facilitate  the  distance  map  algorithm,  a 
bounding  box  is  created  around  each 
displacement map. This method is based loosely 
on the paper by Hirche, Ehlert, Guthe, & Doggett 
[3].  For  each face  with a  displacement  map,  5 
faces are created. The first is simply a copy of 
the  original  face,  displaced  by  the  maximum 
depth of the displacement map. The vertices of 
this face and the original are then used to create 

2



the four faces joining the two. These six faces are 
used for intersection.  If  a ray intersects  any of 
them,  the  point  at  which  it  first  intersects  can 
then be used to determine actual intersection with 
the displacement map.

3. Algorithms

3.1 Linear Interpolation

All  three  of  the  data-maps  used  for  this 
algorithm are accessed at arbitrary floating-point 
coordinates.  As  such,  the  discrete  values  are 
interpolated  to  allow  infinite  resolution.  The 
height and normal maps are linearly interpolated 
in two dimensions, and the distance map in three.

This interpolation is done by first finding the 
four  (or  eight)  bounding  points  of  the  desired 
location.  If  the point  lies  at  or  outside (due to 
floating-point rounding error) the data structure, 
the  point  is  interpolated  just  between the  edge 
points. The interpolation is done by multiplying 
each bounding point's value by a weight defined 
by its distance from the interpolation point.

3.2 Global/Map Translation

The three data-maps are stored as on a plane in 
x-y  coordinate  space,  with  z  being  the  height 
value. A face, however, can be oriented in any 
plane and scaled in any manner. Thus, functions 
for translating points between global coordinates 
and data-map coordinates are necessary.

To translate a data-map point to a global point 
is simple. The proportion of the data-map point's 
x-y position to the resolution of the data-map is 
used to  determine the point  on the face that  it 
represents.  Then,  the  z-value  (height  on  the 
height map of that x-y position) is multiplied by 
the face's  normal,  and the  point  on the face  is 
displaced by this vector.

Translating a global point to a data-map point 
proved more difficult, and there is likely a clearer 
method than what I am using.  First,  the global 

point  is  projected  on  the  face  to  produce  a 
projected  point.  The  difference  between  these 
points  determines  the  z  proportion.  This 
projected point is then projected onto the left side 
of the face and its distance along the side is used 
as the y proportion. It is also projected onto the 
bottom side to determine the x proportion. These 
three  proportional  values  are  then  used  (and 
negated if the point is on the wrong side of the 
face) to determine a position in data-map space, 
which can then be queried for values.

3.3 Normal/Distance Map Generation

As  displacement  maps  are  not  likely  to  be 
accompanied by normal and distance maps, and 
some  procedural  height  maps  are  difficult  to 
procedurally  generate  these  maps  for,  it  is 
important to be able to generate these using the 
height  map.  For  this  implementation,  I  used 
brute-force  methods,  which  could  probably  be 
easily  improved  upon  for  both  efficiency  and 
accuracy.

To  generate  normal  maps,  I  determine  the 
global position p (using the height map) of each 
point in the map. Then, the global positions of 
two  of  its  neighbors  p1 and  p2 are  also 
determined. The cross-product of the vectors pp1 

and  pp2 is  then  used  as  the  normal,  after 
normalizing it and inverting it if it is opposite the 
direction of the face normal.

Generating  distance  maps  is  very 
computationally  expensive  in  this  brute-force 
manner.  For  each  point  p in  the  three-
dimensional  map,  the  distance  (in  world 
coordinates) between the height at that point and 
p is  set  as  an  initial  distance.  Then,  all  points 
within  that  distance  on  the  height  map  are 
checked.  If  a  point  p' is  closer  to  p than  the 
current distance, the distance is updated.

This  method of  populating the  distance  map 
can be very slow depending on the displacement 
map complexity. Also, it has flaws as I detailed 
earlier. These are both possibilities for extension 
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to  this  technique.  For  accuracy,  the  algorithm 
should also check the closest points on the lines 
between each point  on the height  map,  though 
this would make it far more expensive.

3.4 Displacement Map Intersection

As with  a  standard  ray  tracer,  a  ray  is  cast 
from each pixel,  and each face in  the scene is 
queried  for  intersection.  Faces  without 
displacement  maps  are  forwarded  to  standard 
face-intersection routines. If a face does have a 
displacement  map,  then  it  and  its  5  bounding 
boxes are tested for intersection using the same 
face-intersection routines. If none are intersected, 
the face is 'missed.'

If  any  face  is  intersected,  this  intersection 
('hit')  is  passed  to  the  displacement  map 
intersection  routine,  a  recursive  function.  The 
hit's position is translated to data-map space. For 
recursion purposes, if the hit is outside the range 
of the data-maps, or if too many iterations pass, 
the ray-cast is regarded as a 'miss.'

The hit's  position is then queried against  the 
height map. If they are (within epsilon of) equal, 
or  the  hit  has  just  crossed  the  map,  the 
displacement map intersection is terminated. The 
location is set as the ray's hit if it is closer to the 
eye point than the current hit  recorded for that 
ray. The material properties of the face and the 
normal  at  that  position  in  the  normal  map are 
also recorded. If it is not closer, then that hit is 
discarded and intersection with the displacement 
map terminates.

Finally, if the hit has not intersected the height 
map,  the distance  map is  queried  to  determine 
how far  to  advance  the  hit  along the  ray.  The 
method is then recursively called using this new 
sample point.

4. Results

Initially, I tested this algorithm using a simple 
procedural  height  map  'flatmap' that  simply 

generated the maximum height at each position 
(Figures  1  &  3).  The  normals  (normal  of  the 
face)  and  distances  (z  position  –  maximum 
height)  are also simply generated for this map. 
Using  this  assisted  me  in  debugging  the  basic 
intersection  routine,  but  several  bugs  remained 
hidden until I used more complicated maps.

The second map, 'gaussian,' is  a  procedural 
Gaussian map (Figures 2 & 4). The heights are 
generated procedurally using the formula for a 2-
D Gaussian curve with maximum height 1:

h(x,y) = exp(-π*(x^2+y^2))

The  normal  and  distance  maps  are  then 
generated by brute-force. This map was critical 
for  debugging  the  map generation  functions  as 
well  as  the  intersection  function.  It  did  not 
display self-shadows, however.

For shadows, I created a third procedural map 
called 'studded'  (Figures 5-9).  This map uses a 
modulus  function  to  create  alternating  areas  of 
maximum and minimum height. The normal and 
distance maps could be procedurally generated, 
but  I  did not  implement  that.  This  map makes 
painfully  obvious  the  flaw  in  distance  map 
generation  as  I  described,  but  shows  key 
functionality of the ray tracer.

As you can see in Figure 8, this clearly shows 
that  shadowing  and  soft  shadows  still  work 
correctly.  I  also  used  this  map  to  show  that 
reflections  are  present  (Figure  7),  though 
multiple reflections are difficult to see without a 
correct distance map to create a proper rendering 
of the edges.

See the README.txt for detailed information 
on the provided screenshots and rendering times.

5. Future Work

There are many possibilities for extension on 
this  displacement  map  ray  tracing  algorithm; 
some have already been done.
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• As in the ATI [3] and nVidia [4] papers, 
this  could  be  implemented  in  a  GPU, 
though  the  map-generation  algorithms 
should stay CPU-based.

• The  accuracy  of  the  normal-map 
generation could be improved by creating 
surrounding  faces  and  averaging  the 
normals of those faces.

• The  accuracy  of  the  distance-map 
generation  could  be  improved  by 
checking  the  closest  points  on  line 
segments (or faces) between points on the 
height map.

• The  normal-map  and  distance-map 
generation algorithms could be optimized 
with other data structures.

• This could be extended relatively simply 
to allow displacement  maps on spheres, 
and  even  on  arbitrary  objects,  as 
Donnelly [4] describes.
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Figure 1: Gaussian with wrong normals

(Note lighting on red panel from light in lower 
left; compare with lighting on bottom face)
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Figure 2: cornell_elevated.png

(With simple shadows, the center of the light is  
blocked for everything below the displaced face.  
Soft shadows mostly just create a lot of noise in 

this particular scene, due to the large light being 
intersected by the displaced faces.)

Figure 4: cornell_crossing.png

Figure 3: cornell_gaussian.png

(Although the above scene has only one instance 
of the displacement map and the scene below has 

three, the above scene took 6x as long to 
generate the normal/distance maps, due to the 

higher resolution of the map.)

Figure 5: cornell_gausscross.png
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Figure 6: cornell_studded.png

(The issue with displacement map generation 
using only distances to discrete points is readily  
apparent with the studded map, as are shadows.)

Figure 8: cornell_studded_shadows.png

Figure 7: cornell_stud_reflection.png

Figure 9: cornell_reflect.png
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