
Per-Pixel Displacement Mapping and Distance Maps

Daniel Book
Advanced Computer Graphics

Rensselaer Polytechnic Institute

Abstract

Based on a standard software ray-tracer with
soft shadowing and glossy reflection capabilities,
I present a per-pixel displacement mapping
algorithm. This algorithm modifies the
intersection routine already used for shadows
and reflections and so they are preserved. The
algorithm relies on a distance map, which along
with a normal map for lighting information, can
be generated for each point in the displacement
map input. The distance map allows efficient
calculation of dynamic sampling of the
displacement map by an intersecting ray. As per-
pixel displacement mapping can be implemented
in a modern GPU pixel shader, this algorithm
has many future possibilities.

1. Introduction

1.1 Motivation

Displacement mapping has long been a
general method of mapping an object with a
height field texture to render complex textures.
This is an alternative to bump-mapping, which
simply changes the normals on a surface to affect
the lightning, giving the illusion of depth.
Displacement mapping changes the actual depth
of points on a surface. Usually, this is done by
creating many small triangles (tessellating) to
represent the displacement map on the surface.
Per-pixel displacement mapping is often more
computationally expensive than mesh
tessellation, as well as more exact and easily
refineable. Most importantly for future
applications, it can be implemented in the pixel
shader of modern GPUs, where the tessellation
method cannot.

1.2 Related Work

The displacement mapping system presented
in this paper is implemented in a ray-tracing
system based on the ray tracing system presented
by Turner Whitted [1] with distributed shadow
and reflection samples as presented by Cook,
Porter & Carpenter [2]. As only the intersection
methods are modified, these algorithms maintain
shadows and reflections seamlessly on
displacement-mapped surfaces as well.

The displacement-mapping algorithm
presented is based on both AMD's [3] and
nVidia's [4] papers on per-pixel displacement
mapping. The first presents extrusion to create
bounding boxes for displacement map
intersection. The second presents distance maps
as a solution for undersampling. Both of these
papers discuss implementation in hardware, but
their methods are easily implemented in
software. The resulting rendering is still
relatively fast in software, as these algorithms are
optimized for the restricted environment of the
GPU pixel shader.

2. Data Structures

2.1 Height Map

The height map is essentially the
representation of the actual displacement map. It
is a texture of floating-point values ranging from
0 to 1, stored as a two-dimensional array. These
values represent how far the face should be
displaced at that point, and can be accessed
directly, or interpolated for specific points on a
face. In this implementation, the values are
linearly interpolated for any given coordinates.

The height map can be created at any
resolution of at least 2 in each dimension. The
heights can be determined from a given texture
file, or procedurally. I chose in my
implementation to separate the dimensions of the
face and the depth of displacement from the
height map, as this allows a single displacement
map to be applied to different faces using
different depths. However, this requires each
individual face to handle its own normal and
distance map, as I describe below.

2.2 Normal Map

The normal map is very similar to the height
map, and is created at the same resolution, but at
each position stores a normalized vector
indicating the normal of the displacement map at
that position. Originally, I created and stored the
normal map with the displacement map, but as
differing depths and geometry of a face can
change the normals, I found it necessary to
handle normals at the individual faces so these
dimensions can be accounted for.

Similarly to height map interpolation, an
interpolated normal can be accessed at any
coordinate within the face. Using the normal map
alone, this algorithm could easily produce a
bump-mapped surface; the surface would appear
to be perturbed due to lighting, as determined by
surface normals, but it still would be flat.

The normal map can be either read in from a
file with the height map, generated procedurally
alongside the height map, or generated using a
brute-force algorithm based on the defined height
map.

2.3 Distance Map

A common problem in per-pixel displacement
mapping is sampling density. Coarse sampling
can result in missing fine or sharp details, or
missing the surface altogether. As a displacement
map may contain sharp points, it is not simple to
determine how finely the map must be sampled
to adequately display the detail.

The distance map is presented by William
Donnelly [4] as a solution to this problem.
Alongside the height and normal maps, a 3-
dimensional distance map is created. At each
point in this map, the shortest distance to the
height map is stored. When a ray intersects the
displacement map, the point p where it intersects
is queried on the distance map. This distance d is
used to advance the sampling of the ray. The
method works because the point d' = p+d must
either be the closest point on the height map to p,
or has not yet intersected the height map.

I originally created the distance map in each
displacement map as with the normal map.
However, as different face geometry can change
the relative distances between points on the
displacement map, the distance map must also be
created for each face, and is thus stored there.
Also, I implemented distance map interpolation
similarly to the height and normal maps,
extended to 3 dimensions.

The distance map can be read from a file,
procedurally generated, or generated using the
height map. The last method (as I implemented
it) results in some artifacts with certain maps,
however. At sharp changes in the height field, a
portion of the interpolated height map can pass
closer to p than the points in the actual height
map, which the brute-force generated distance
map is determined from. This results in rays
'missing' the height map, so the face is not
rendered at those pixels.

2.4 Convex Hull Bounding Box

To prevent the unnecessary displacement-map
calculation for rays that completely miss, as well
as to facilitate the distance map algorithm, a
bounding box is created around each
displacement map. This method is based loosely
on the paper by Hirche, Ehlert, Guthe, & Doggett
[3]. For each face with a displacement map, 5
faces are created. The first is simply a copy of
the original face, displaced by the maximum
depth of the displacement map. The vertices of
this face and the original are then used to create

2

the four faces joining the two. These six faces are
used for intersection. If a ray intersects any of
them, the point at which it first intersects can
then be used to determine actual intersection with
the displacement map.

3. Algorithms

3.1 Linear Interpolation

All three of the data-maps used for this
algorithm are accessed at arbitrary floating-point
coordinates. As such, the discrete values are
interpolated to allow infinite resolution. The
height and normal maps are linearly interpolated
in two dimensions, and the distance map in three.

This interpolation is done by first finding the
four (or eight) bounding points of the desired
location. If the point lies at or outside (due to
floating-point rounding error) the data structure,
the point is interpolated just between the edge
points. The interpolation is done by multiplying
each bounding point's value by a weight defined
by its distance from the interpolation point.

3.2 Global/Map Translation

The three data-maps are stored as on a plane in
x-y coordinate space, with z being the height
value. A face, however, can be oriented in any
plane and scaled in any manner. Thus, functions
for translating points between global coordinates
and data-map coordinates are necessary.

To translate a data-map point to a global point
is simple. The proportion of the data-map point's
x-y position to the resolution of the data-map is
used to determine the point on the face that it
represents. Then, the z-value (height on the
height map of that x-y position) is multiplied by
the face's normal, and the point on the face is
displaced by this vector.

Translating a global point to a data-map point
proved more difficult, and there is likely a clearer
method than what I am using. First, the global

point is projected on the face to produce a
projected point. The difference between these
points determines the z proportion. This
projected point is then projected onto the left side
of the face and its distance along the side is used
as the y proportion. It is also projected onto the
bottom side to determine the x proportion. These
three proportional values are then used (and
negated if the point is on the wrong side of the
face) to determine a position in data-map space,
which can then be queried for values.

3.3 Normal/Distance Map Generation

As displacement maps are not likely to be
accompanied by normal and distance maps, and
some procedural height maps are difficult to
procedurally generate these maps for, it is
important to be able to generate these using the
height map. For this implementation, I used
brute-force methods, which could probably be
easily improved upon for both efficiency and
accuracy.

To generate normal maps, I determine the
global position p (using the height map) of each
point in the map. Then, the global positions of
two of its neighbors p1 and p2 are also
determined. The cross-product of the vectors pp1

and pp2 is then used as the normal, after
normalizing it and inverting it if it is opposite the
direction of the face normal.

Generating distance maps is very
computationally expensive in this brute-force
manner. For each point p in the three-
dimensional map, the distance (in world
coordinates) between the height at that point and
p is set as an initial distance. Then, all points
within that distance on the height map are
checked. If a point p' is closer to p than the
current distance, the distance is updated.

This method of populating the distance map
can be very slow depending on the displacement
map complexity. Also, it has flaws as I detailed
earlier. These are both possibilities for extension

3

to this technique. For accuracy, the algorithm
should also check the closest points on the lines
between each point on the height map, though
this would make it far more expensive.

3.4 Displacement Map Intersection

As with a standard ray tracer, a ray is cast
from each pixel, and each face in the scene is
queried for intersection. Faces without
displacement maps are forwarded to standard
face-intersection routines. If a face does have a
displacement map, then it and its 5 bounding
boxes are tested for intersection using the same
face-intersection routines. If none are intersected,
the face is 'missed.'

If any face is intersected, this intersection
('hit') is passed to the displacement map
intersection routine, a recursive function. The
hit's position is translated to data-map space. For
recursion purposes, if the hit is outside the range
of the data-maps, or if too many iterations pass,
the ray-cast is regarded as a 'miss.'

The hit's position is then queried against the
height map. If they are (within epsilon of) equal,
or the hit has just crossed the map, the
displacement map intersection is terminated. The
location is set as the ray's hit if it is closer to the
eye point than the current hit recorded for that
ray. The material properties of the face and the
normal at that position in the normal map are
also recorded. If it is not closer, then that hit is
discarded and intersection with the displacement
map terminates.

Finally, if the hit has not intersected the height
map, the distance map is queried to determine
how far to advance the hit along the ray. The
method is then recursively called using this new
sample point.

4. Results

Initially, I tested this algorithm using a simple
procedural height map 'flatmap' that simply

generated the maximum height at each position
(Figures 1 & 3). The normals (normal of the
face) and distances (z position – maximum
height) are also simply generated for this map.
Using this assisted me in debugging the basic
intersection routine, but several bugs remained
hidden until I used more complicated maps.

The second map, 'gaussian,' is a procedural
Gaussian map (Figures 2 & 4). The heights are
generated procedurally using the formula for a 2-
D Gaussian curve with maximum height 1:

h(x,y) = exp(-π*(x^2+y^2))

The normal and distance maps are then
generated by brute-force. This map was critical
for debugging the map generation functions as
well as the intersection function. It did not
display self-shadows, however.

For shadows, I created a third procedural map
called 'studded' (Figures 5-9). This map uses a
modulus function to create alternating areas of
maximum and minimum height. The normal and
distance maps could be procedurally generated,
but I did not implement that. This map makes
painfully obvious the flaw in distance map
generation as I described, but shows key
functionality of the ray tracer.

As you can see in Figure 8, this clearly shows
that shadowing and soft shadows still work
correctly. I also used this map to show that
reflections are present (Figure 7), though
multiple reflections are difficult to see without a
correct distance map to create a proper rendering
of the edges.

See the README.txt for detailed information
on the provided screenshots and rendering times.

5. Future Work

There are many possibilities for extension on
this displacement map ray tracing algorithm;
some have already been done.

4

• As in the ATI [3] and nVidia [4] papers,
this could be implemented in a GPU,
though the map-generation algorithms
should stay CPU-based.

• The accuracy of the normal-map
generation could be improved by creating
surrounding faces and averaging the
normals of those faces.

• The accuracy of the distance-map
generation could be improved by
checking the closest points on line
segments (or faces) between points on the
height map.

• The normal-map and distance-map
generation algorithms could be optimized
with other data structures.

• This could be extended relatively simply
to allow displacement maps on spheres,
and even on arbitrary objects, as
Donnelly [4] describes.

References

[1] Whitted, Turner, “An improved illumination
model for shaded display,” Communications of
the ACM, v.23 n.6, p.343-349, June 1980.

[2] Cook, Robert L., Thomas Porter, & Loren
Carpenter, “Distributed Ray Tracing,” ACM
SIGGRAPH Computer Graphics, v.18 n.3, p137-
145, July 1984.

[3] Hirche, Johannes, Alexander Ehlert, Stefan
Guthe, & Michael Doggett, “Hardware
Accelerated Per-Pixel Displacement Mapping,”
Graphics Interface, 2004.

[4] Donnelly, William, “Per-Pixel Displacement
Mapping with Distance Functions,” GPU Gems
2, p123-136, 2005.

Figure 1: Gaussian with wrong normals

(Note lighting on red panel from light in lower
left; compare with lighting on bottom face)

5

Figure 2: cornell_elevated.png

(With simple shadows, the center of the light is
blocked for everything below the displaced face.
Soft shadows mostly just create a lot of noise in

this particular scene, due to the large light being
intersected by the displaced faces.)

Figure 4: cornell_crossing.png

Figure 3: cornell_gaussian.png

(Although the above scene has only one instance
of the displacement map and the scene below has

three, the above scene took 6x as long to
generate the normal/distance maps, due to the

higher resolution of the map.)

Figure 5: cornell_gausscross.png

6

Figure 6: cornell_studded.png

(The issue with displacement map generation
using only distances to discrete points is readily
apparent with the studded map, as are shadows.)

Figure 8: cornell_studded_shadows.png

Figure 7: cornell_stud_reflection.png

Figure 9: cornell_reflect.png

7

