
Time Restricted Parallel Ray Tracing

Stephen Kelley and Edward Levie

April 24, 2008

Introduction

Ray tracing is certainly one of the fundamental algorithms in the world of com-
puter graphics. Given enough time, processing power, and highly detailed ge-
ometry, the algorithm can produce wonderfully realistic renderings. However,
these requirements, especially the first two, can cause a number of headaches
for individuals interested in creating renderings.

This paper focuses on including the dynamic of time while ray tracing. Time
is a restriction on everything in the natural world, and ray tracing is no different.
One could forsee many circumstances in which an individual would want to
produce an image within a certain duration. Real-time ray tracing for video
games or interactive systems is one such use. In a video game situation it is
conceivable that gamers may want a rendering system in which they don’t have
to set their graphics rendering options to attain a specific frame rate; instead the
ray tracer would achieve whatever quality the computer system is capable of.
We do not frame our exploration within any sepcific domain; rather, we simply
examine the issues raised when guaranteed delivery of a rendering is required
by a given time.

There are two ways to view the inclusion of a time restriction in a ray tracing
scheme. The first is to view the time limitation as a guideline or a goal to achieve
over the average case (if rendering multiple frames consecutively). This level
of restriction gives more leeway to the algorithm, as it may adapt to the input
geometry and spend more time on more complex scenes while spending less
on simpler scenes. The second method, and the one which we have adopted
for this text, involves setting a hard cap on the time required to ray trace a
scene regardless of its complexity. While certainly less general and adaptive
than the previously described method, the method is much simpler. Striving
for an average framerate introduces questions regarding the tradeoff between
saving time for a later run or perfecting the tiniest of shadings on the most
insignificant of objects in a scene.

1



Previous Work

Though we have chosen the simpler of the two methods, both allow us to explore
a very important question. If an image cannot render to completion due to a
time constraint, how can the closest estimate of the image be generated in the
least amount of time?

The easiest, and one would imagine increasingly more common, approach
would be to use a grid or a cluster to run the ray tracing on many processors
in parallel. This has been an area of research for quite a long time [1, 2]. Ray
tracing is a particularly good algorithm to implement in parallel because of
its pixel to pixel independence. For this paper, we chose to use a pre-existing
parallel ray tracing program called Tachyon located at [3].

Tachyon Overview

Tachyon is a parallel ray tracer which provides many powerful features which
make it a capable rendering system. Parallelism in Tachyon is achieved through
the use of message passing libraries OpenMP and MPI and through multithread-
ing pthreads, the Posix thread library. It is able to run on a wide variety of ma-
chines ranging from sequential single-processor computers to large distributed
memory supercomputers due to its comprehensive compiler and platform sup-
port. Included in the ray tracer is a spatial decomposition scheme which greatly
increases rendering performance by automatically partitioning a scene. While
not as robust as other ray tracing implementations, antialiasing is achieved
through perturbations of primary rays and averaged using a simple box filter.
Tachyon includes support for both Phong and Blinn shading and its native scene
description language has facilities for texture mapping. The scene description
language provides many geometric primitives, but for complex scenes Tachyon
also supports AC3D and NFF files. For a full list of Tachyon’s features and
capabilities as well as tips for running it, see [4].

Such an array of features allows for flexibility in rendering a given scene on
the computing resources available to the user. It is possible to fine-tune most
rendering quality options when creating a scene. Options such as scene reso-
lution, number of antialiasing rays, depth of recursion, and specular shading
model can be chosen to provide a desired image quality. The parallel nature of
Tachyon requires options for managing distributed computation. Settings gov-
erning threading and message passing configuration are available as command
line arguments. In sum, Tachyon’s feature set makes it a versatile and flexible
parallel ray tracer from which to build time restricted parallel ray tracing. A
sample rendering from tachyon is shown in figure 1.

Theory

Now, having increased our computational ability through parallelization, one
might assume that we have conquered issues of time. This is not the case.
Consider the images in figure 2. Here, both of them are rendered incompletely

2



Figure 1: Sample rendering using an unmodified version of Tachyon. This image
spent 12 seconds being raytraced by 2 threads

due to the time limitation. However, it can be argued that the image on the
right does a better job of representing the true image because of a more uniform
selection of display points is shown. This brings us back to the issue of how to
get the best representation of the actual image the fastest.

In [5], the authors describe a number of approaches based on keeping a
priority queue of rays based on some user specified priority function. Before
getting into the function, it would be useful to cover the mechanism by which
they convert a traditionally recursive operation or raytracing into one which can
be broken into many components.

Using the Phong illumination equation, we know that the illumination of
a pixel in the image plane is going to be equal to the combination of local
(ambient and light source illumination) and global (reflected and transmitted
rays) contrbutions. The local illumination values can be calculated by sending
out shadow rays to all lights in the scene. In order to separate the calculation
of different rays’ contributions to the final illumination of the pixel, they define
a weight on each ray. If a primary, reflected, or transmitted ray is traced
and hits an object, it will spawn a reflected and transmitted ray whose weight
is equal to the weight of the parent ray times the specular or transmittive
coefficient of the surface. Consider a ray which has reflected off 6 different
surfaces before hitting a pure diffuse surface. The ray’s contribution to the
original pixel that it passed through will be the illumination of the diffuse surface
times its weight, which would currently be the product of all 6 reflective surfaces’
specular coefficients. In this way, rays can be traced in any order, since they
track their own contribution to the original pixels in the image plane that they
passed through.

The authors also make an observation about shadow rays. Without allowing
shadow rays to be cast whenever the user specifies, the idea of a priority based
scheme is quite limited. In order to get around this, when calculating the local
illumination of a point, they initially assume that no occlusions exist. Shadow

3



Figure 2: The image on the left is a result of running an unmodified version of
Tachyon on 2 threads for 2 seconds. Note the systematic behavior of Tachyon by
default. When time thresholds are small, much of the image is completely black.
The image on the right shows the result of tracing with a random selection of
initial pixels. Note that the general ”sense” of the image is there. 2 spheres can
be seen, and their shadowing can be made out.

rays are placed onto the queue with the weight of the ray which hit the point
that they are testing for shadows. When the rays are popped from the queue,
they calculate how shadowed they are and subtract this value times the current
weight from the illumination of the pixel in the image plane.

In their paper, the authors test various priority mechanisms to determine
which approach to employ to achieve the actual image the fastest. Some of the
mechanisms were quite interesting. For instance, assign every object a priority
and have any ray which hits the object inherit that priority. However, the best
results were obtained with a fairly intuitive mechanism: selecting the ray which
has the highest weight and therefore could affect the current image the most.

Implementation

For our implementation, the first task was to limit the execution of the code
based on time. This was simple enough while code was loop and recursion
based. We simply check a clock before tracing each ray, and if it is beyond the
allotted time, all work stops. With the shift to a priority queue, time limitations
remained easy. We simply popped rays off the queue until the limit was hit.

The priority queue implementation is located in pqueue.h and pqueue.c.

4



This code was found online at [6] which saved us quite a bit of work. The
main thrust of the work was converting the full shade() function into a series of
functions that would handle reflected, transmitted, primary, and shadow rays
as well as do phong shading on surfaces. With the shift from a recursive tracing
scheme to a queue based scheme, we had to enhance various data structures
throughout the program. For instance, each ray now had to track which pixel
in the image plane it was to update. Any ray spawned then had to be passed the
location of these pixels as well. We also had to modify the initial weights of the
primary rays from 1, as stated in the paper, to 1/(aasamples+1). This allows
antialiasing rays to contribute directly and immediately to the image buffer
rather than the recursive approach of finding the illumination of the pixel with
respect to each perturbed ray and then averaging them together. Without this
modification the antialiasing rays would each contribute the full illumination,
thus oversaturating the image.

Testing was accomplished by generating images using unmodified Tachyon
and the corresponding image using our time restricted rendering. Doing this
allowed us to pinpoint how our renderings were progressing and whether or not
they were correct. Using a debugging tool was not realistic given the nature
of the code. The reasons for this are elaborated on in Difficulties, Bugs, and
Blunders. Testing our method was also performed by running the code on
varying hardware configurations from a single-core Pentium 4 to an eight-core
Xeon using multiple threading options from a single thread to 8 threads. This
allowed us to verify our results under limited resources and under conditions
where computing power was bountiful.

Results

Our results were a bit disappointing. Our modifications routinely performed
worse than the recursive version of the program. Comparison output is shown
in Figure 3. Both images were generated using 3 second limits, but the recursive
version ended up finishing in a mere 1.7 seconds. Figure 4 also shows a side by
side comparison of the two algorithms. These runs were allowed to run without
regard for time in order to get a sense of how far behind our implementation
actually was. The final running time for unmodified Tachyon was 5.7s while our
version finished in 28.1s.

I would guess that this increase in speed has to do with our version not taking
advantage of some of the short cuts in the software. Also, the priority queue
implementation might be a little bit slow. A major problem that would keep this
from being useful with a small number of threads is the memory required to store
the required priority queue. Many times, our processes running sequentially
allocated over 1Gb of RAM. Part of this is due to inherent memory requirements
of keeping the queue, but part of it is also due to us not wanting to modify
too much of the underlying structure of the program, and as a result having
some pieces of information duplicated or stored for no reason. We found that
modifying the Tachyon source was a delicate process; the parallelism introduces

5



Figure 3: The image on the left is the result of running on an unmodified version
of Tachyon on 2 threads for 3 seconds. The actual execution took only 1.79s.
The image on the right is the result of running on our priority based version on
2 threads for 3 seconds.

Figure 4: An unbounded run for each algorith with respect to time. The image
on the left is from the unmodified version of Tachyon. It finished in 5.7s while
the priority queue based version finished in 28.1s

6



sensitivies in memory management.

Difficulties, Bugs, Blunders

Overall, I’d say that the hardest part about this project was simply dealing
with someone else’s code. You can see from the results section, Tachyon is
very fast. Unfortunately for us, this means that the code is very optimized and
very hard to understand. We spent hours and hours poring over very strange
errors in the code. Tachyon is written in C and the necessity of manual memory
management, pointer manipulation, and simple data structures resulted in very
low coding productivity.

By far the biggest time sink for us was tracking down a segmentation fault.
Tachyon is actually compiled as a library and for performance uses heavy com-
piler optimizations. The combination of these factors makes debugging via gdb
almost impossible. We ended up debugging via printf’s scattered throughout the
code. This introduced yet another set of complications since our time bounding
caused the program to complete when much output had to be written. The
bug ended up having to do with a bitwise AND used to check a flag storing the
ray type. This issue highlights how difficult it was to work with the Tachyon
source; the number of flags and low-level logic operations to manage them was
dumbfounding.

In terms of bugs, generally speaking we advise against running with an-
tialiasing off. It tends to produce inconsistent results that we were not quite
pinpointed yet. We believe that we understand the cause of speckles in the
shadow on the left of Figure 5 (they may be due to floating point errors when
removing the illumination that should be occluded), but we were not able to
determine why the table appears transparent in the right image.

Future Work

There are many possible avenues to extend all of this work. First, all of the
code needs to be cleaned up. We might have been better off starting with a less
optimized, simpler base library to modify, but using Tachyon gave us threading
which can be extremely complicated to implement and debug. A very interesting
avenue to explore would be adaptive antialiasing dependent on detail of features
in the image plane. If a mechanism was developed to detect sharp shadow edges,
it should be possible to cast more rays in those areas in order to create smoother
gradients. The priority queue implementation heretofore described could aid in
this process by prioritizing primary rays and ”cleaning up” only once a sufficient
representation of the image has already been produced.

Another interesting area to explore was attempted in this project but not
fully implemented. The idea is another possibility for implementing time re-
strictions. Instead of a priority queue, each primary ray is given a start time
and a deadline. The deadline for a ray would be:

7



Figure 5: 2 blunders which only appear when antialiasing is turned off

ray.start_time + (1/FRAME_RATE)/(scene.h_res * scene.v_res)

Basically each primary ray gets an equal fraction of the time restriction
for rendering the ray. As soon as the deadline is reached the ray would be
stopped and most likely set to have hit the background. The complications
of implementing this in Tachyon is that there are many points at which rays
are created and the function call hierrarchy for a given ray is complex and
heterogenous. Primary rays follow a very different path than reflective rays,
which are different from shadow rays. Admittedly this approach would have its
own set of complications. The quality of the rendering in this case would not
be optimal. Many rays in a scene never intersect any object but these would be
given the same amount of time as a reflective ray traversing a potentially deep
recursive path. The result of this would be that image quality would be lower if
the rendering completed without reaching the time limit; many rays would have
been stopped before necessary. An adaptive method to vary deadlines would be
applicable here.

Conclusions

We have described our attempts at extending a parallel ray tracer, Tachyon,
with the ability to perform time restricted rendering. Tachyon presented many
challenges to implementation of our ideas. We were however able to incorporate
a priority queue scheme to limit the amount of time spent rendering an image.
Overall we both learned a great deal about the intricacies of parallel ray trac-

8



ing and the concerns that must be made when converting a complex recursive
process to support truncated processing based on time.

We did not keep close watch on the amount of time we spent coding though
we probably should have. A very rough estimate of the amount of coding time
would be 30 to 40 hours. As discussed previously much of our time was spent not
coding but simply elucidating the complexities of the existing Tachyon codebase.
Stephen found and incorporated the priority queue initially. Ed extended the
data structures in use to allow for immediate updating of the image buffer.
Stephen and Ed both spent many hours tracking down a segmentation fault.
Ed rendered many of the scenes early on in order to find some reasonable test
data. Stephen wrote the first revision of the project report. Ed edited and
added content to the report prior to its finalization. Stephen generated the
example images in the report. Stephen and Ed found articles about previous
work in this space. Stephen heroically stayed up over 24 hours (not all of it
coding) to make shadows work properly!

References

[1] Muntean, T., Waille, P.: A massively parallel approach for the design of a
raytracing oriented architecture. (1991) 41–51

[2] DeMarle, D.E., Parker, S., Hartner, M., Gribble, C., Hansen, C.: Dis-
tributed interactive ray tracing for large volume visualization. In: PVG ’03:
Proceedings of the 2003 IEEE Symposium on Parallel and Large-Data Vi-
sualization and Graphics, Washington, DC, USA, IEEE Computer Society
(2003) 12

[3] (http://jedi.ks.uiuc.edu/ johns/raytracer/)

[4] (http://jedi.ks.uiuc.edu/ johns/raytracer/papers/tachyon.pdf)

[5] Yagel, R., Meeker, J.: Priority-driven ray tracing. The Journal of Visual-
ization and Computer Animation 8 (1997) 17–32

[6] (http://www.sbhatnagar.com/SourceCode/pqueue.html)

9


