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1. Abstract 

Rendering large terrain meshes can be 

difficult, as the level of detail involved is 

often too high in areas that we don’t need it 

to be, and too low in areas where it would 

be better defined. However due to the 

regular grid-nature of height maps as 

opposed to traditional 3D meshes, some 

mathematical improvements can be made 

to this. 

2. Related Work 

Our work is based primarily off of the 

work done by Mark Duchanaieu et al on 

their paper entitled ROAMing Terrain: Real-

time Optimally Adapting Meshes.   

3. Data Structures 

The ROAM algorithm requires a large 

data set to take values from in order to 

draw triangles at various levels of detail. 

For this, we chose to use a fractally 

generated terrain based on the Diamond 

Square algorithm. This allows us to 

generate a set of data as detailed as the 

user requests. The Diamond Square 

algorithm works by seeding four corner 

values, an amount of perturbation, and a 

roughness coefficient. Values are then 

chosen at the midpoints of the resulting 

squares and diamonds, and perturbed up 

or down. After each iteration, the roughness 

lowers this perturbation, creating either 

rough or smooth surface depending on the 

values.  

Due to the nature of this algorithm, the 

highest or lowest point is almost always in 

the exact center. We used a novel approach 

of taking an input file of icon values (M 

representing a mountain, tall, rough, and 

high perturbation, etc) and sewed these 

together, averaging not only the height 

values, but also the roughness and 

perturbation values across the map. This 

results in smooth gradients and a lot of 

control for the user to create interesting 

landscapes relatively quickly. 

The most important data structure for 

the ROAM algorithm, the Binary Triangle 

Tree, was introduced by Duchanaieu et al.  

The structure is able to store right isosceles 

triangles in a way that allows for easy 

refinement, while at the same time 

simplifying the process of preventing T-

junctions in the resulting triangle mesh.   

The Binary Triangle Tree consists of a 

triangle which keeps track of five other 

triangles: its left child, right child, left 

neighbor, right neighbor, and base 

neighbor.  These five triangles contain all 

the information needed to create adaptively 

refined triangle meshes. 



Together, the two children fill up the 

entirety of the area occupied by the parent 

triangle.  The base neighbor is the triangle 

adjacent to the current triangle along their 

hypotenuses.  With the hypotenuse on the 

bottom, the current triangle’s left neighbor 

is on the left, and the right neighbor is on 

the right. 

 

4. Method Overview 

The main algorithm works as follows.  

First, a height field, stored as a nested 

vector, is stored in memory.  Then the two 

base triangles that make up the square 

piece of terrain are initialized.  Now, a 

series of splits are called, refining the 

original two triangles down until the given 

error metrics either tell the split function to 

stop, or the maximum number of binary 

triangle tree nodes are reached.   

Triangle are prioritized via different 

error metrics, and then placed onto a 

priority queue.  The top triangle on the 

priority queue is then checked to see if it is 

as refined as it can get.  If so, it removed 

from the queue.  Otherwise, split is called 

on the triangle before removing it form the 

queue. 

We implemented three different metrics 

to judge whether or not a given triangle 

needed to be split.  First, we calculated the 

difference between the interpolated height 

of the middle of the hypotenuse given by 

averaging the left and right vertices and the 

actual height value of the middle of the 

hypotenuse from the actual height field.  

Triangles with a larger difference (e.g. a 

larger error between the current level and 

the next level down) were given a higher 

priority value.   

Second, we took into account a 

triangle’s distance from the ‘focus point.’  

The focus point is a point we placed on the 

terrain which simulated a potential camera.  

When used in practice the focus point 

would be the actual camera itself, but this 

way we were able to see the results of the 

algorithm from a distant viewpoint.  

Finally, we implemented a visibility 

check.  We made our focus point ‘look’ 

towards the center of the terrain.  Any 

triangle whose center was not in the field of 

view was taken off of the split queue.   

5. Results 

Our implementation is able to create an 

optimal mesh given the metrics we 

programmed.  On an IBM T60 laptop, the 

program drops down into ‘interactive’ frame 

rates at around two hundred fifty thousand 

triangles.  With some more optimization, as 

well as possible inclusion of graphics 

hardware in the algorithm, our 

implementation should be able to retain 

real-time frame rates at even greater 

triangle count. 

6. Conclusion 

The ROAM algorithm is, at its core, a 

very simple, expandable algorithm.  There 

are a multitude of different error metrics 

which may be added in to the basic set of 

code depending on the problem at hand.   

Unfortunately, as it stands, the ROAM 

algorithm has fallen behind more current 

terrain LOD algorithms because it does not 



take advantages of modern graphics 

hardware. 

Also, our code does not allow for the 

number of triangles to be dynamically 

changed; it is hard coded into roam.cpp. 

 

7. Notes 

Our project is limited in many ways, a 

problem that we recognize, though have 

been unable to rectify as of yet.  Our 

method does not take advantage of frame 

coherence in order to merge already-split 

triangles.  Rather, our method recomputes 

the optimal triangulation for every frame.  

Nor does our method take advantage of full 

view frustum culling.  We attempted to 

implement view frustum culling, but our 

implementation was not working as well as 

was to be expected, so it was removed. In 

its place, however, triangles in the view 

frustum are not split as readily as others. 

John created the terrain generation 

algorithm, though he has not expanded it 

yet as that was deemed too low of a priority.  

Zachary started work on getting the basics 

of the ROAM algorithm set up, though John 

was the first to make serious headway on 

the algorithm.  Zachary then cleaned up the 

code and reformatted the code into classes.  

At this point, both John and Zachary 

worked together to implement the rest of 

the algorithm.  John then cleaned up the 

final code, while Zachary worked on this 

report. 
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