

Terrain LoD via ROAM
John Schwartz and Zachary Cross

1. Abstract

Rendering large terrain meshes can be

difficult, as the level of detail involved is

often too high in areas that we don’t need it

to be, and too low in areas where it would

be better defined. However due to the

regular grid-nature of height maps as

opposed to traditional 3D meshes, some

mathematical improvements can be made

to this.

2. Related Work

Our work is based primarily off of the

work done by Mark Duchanaieu et al on

their paper entitled ROAMing Terrain: Real-

time Optimally Adapting Meshes.

3. Data Structures

The ROAM algorithm requires a large

data set to take values from in order to

draw triangles at various levels of detail.

For this, we chose to use a fractally

generated terrain based on the Diamond

Square algorithm. This allows us to

generate a set of data as detailed as the

user requests. The Diamond Square

algorithm works by seeding four corner

values, an amount of perturbation, and a

roughness coefficient. Values are then

chosen at the midpoints of the resulting

squares and diamonds, and perturbed up

or down. After each iteration, the roughness

lowers this perturbation, creating either

rough or smooth surface depending on the

values.

Due to the nature of this algorithm, the

highest or lowest point is almost always in

the exact center. We used a novel approach

of taking an input file of icon values (M

representing a mountain, tall, rough, and

high perturbation, etc) and sewed these

together, averaging not only the height

values, but also the roughness and

perturbation values across the map. This

results in smooth gradients and a lot of

control for the user to create interesting

landscapes relatively quickly.

The most important data structure for

the ROAM algorithm, the Binary Triangle

Tree, was introduced by Duchanaieu et al.

The structure is able to store right isosceles

triangles in a way that allows for easy

refinement, while at the same time

simplifying the process of preventing T-

junctions in the resulting triangle mesh.

The Binary Triangle Tree consists of a

triangle which keeps track of five other

triangles: its left child, right child, left

neighbor, right neighbor, and base

neighbor. These five triangles contain all

the information needed to create adaptively

refined triangle meshes.

Together, the two children fill up the

entirety of the area occupied by the parent

triangle. The base neighbor is the triangle

adjacent to the current triangle along their

hypotenuses. With the hypotenuse on the

bottom, the current triangle’s left neighbor

is on the left, and the right neighbor is on

the right.

4. Method Overview

The main algorithm works as follows.

First, a height field, stored as a nested

vector, is stored in memory. Then the two

base triangles that make up the square

piece of terrain are initialized. Now, a

series of splits are called, refining the

original two triangles down until the given

error metrics either tell the split function to

stop, or the maximum number of binary

triangle tree nodes are reached.

Triangle are prioritized via different

error metrics, and then placed onto a

priority queue. The top triangle on the

priority queue is then checked to see if it is

as refined as it can get. If so, it removed

from the queue. Otherwise, split is called

on the triangle before removing it form the

queue.

We implemented three different metrics

to judge whether or not a given triangle

needed to be split. First, we calculated the

difference between the interpolated height

of the middle of the hypotenuse given by

averaging the left and right vertices and the

actual height value of the middle of the

hypotenuse from the actual height field.

Triangles with a larger difference (e.g. a

larger error between the current level and

the next level down) were given a higher

priority value.

Second, we took into account a

triangle’s distance from the ‘focus point.’

The focus point is a point we placed on the

terrain which simulated a potential camera.

When used in practice the focus point

would be the actual camera itself, but this

way we were able to see the results of the

algorithm from a distant viewpoint.

Finally, we implemented a visibility

check. We made our focus point ‘look’

towards the center of the terrain. Any

triangle whose center was not in the field of

view was taken off of the split queue.

5. Results

Our implementation is able to create an

optimal mesh given the metrics we

programmed. On an IBM T60 laptop, the

program drops down into ‘interactive’ frame

rates at around two hundred fifty thousand

triangles. With some more optimization, as

well as possible inclusion of graphics

hardware in the algorithm, our

implementation should be able to retain

real-time frame rates at even greater

triangle count.

6. Conclusion

The ROAM algorithm is, at its core, a

very simple, expandable algorithm. There

are a multitude of different error metrics

which may be added in to the basic set of

code depending on the problem at hand.

Unfortunately, as it stands, the ROAM

algorithm has fallen behind more current

terrain LOD algorithms because it does not

take advantages of modern graphics

hardware.

Also, our code does not allow for the

number of triangles to be dynamically

changed; it is hard coded into roam.cpp.

7. Notes

Our project is limited in many ways, a

problem that we recognize, though have

been unable to rectify as of yet. Our

method does not take advantage of frame

coherence in order to merge already-split

triangles. Rather, our method recomputes

the optimal triangulation for every frame.

Nor does our method take advantage of full

view frustum culling. We attempted to

implement view frustum culling, but our

implementation was not working as well as

was to be expected, so it was removed. In

its place, however, triangles in the view

frustum are not split as readily as others.

John created the terrain generation

algorithm, though he has not expanded it

yet as that was deemed too low of a priority.

Zachary started work on getting the basics

of the ROAM algorithm set up, though John

was the first to make serious headway on

the algorithm. Zachary then cleaned up the

code and reformatted the code into classes.

At this point, both John and Zachary

worked together to implement the rest of

the algorithm. John then cleaned up the

final code, while Zachary worked on this

report.

8. Bibliography

Duchaineau, M., Wolinski, M., Sigeti, D.,
Miller, M., Aldrich, C., and Mineev-

Weinstein, M. "ROAMing Terrain: Real-time
Optimally Adapting Meshes", IEEE

Visualization '97 Proceedings, 1997.

Bryan Turner, “Real-Time Dynamic Level of

Detail Terrain Rendering with ROAM”,
http://www.gamasutra.com/features/2000
0403/turner_01.htm.

Hoppe, H. "Smooth View-Dependent Level-

of-Detail Control and its Application to
Terrain Rendering"
(http://www.research.microsoft.com/~hopp

e)

