Voxels & Collisions

Last Time?

- · Spring-Mass Systems
- Numerical Integration (Euler, Midpoint, Runge-Kutta)
- Modeling string, hair, & cloth

Today

- More on Cloth!
 - Taylor Series Analysis
 - Stiffness
 - Implicit Integration
- · Implicit Surfaces
- Voxels
- Collisions
- Untangling Cloth

Analysis using Taylor Series

- Expand exact solution $\mathbf{X}(t)$ $\mathbf{X}(t_0 + h) = \mathbf{X}(t_0) + h \left(\frac{d}{dt} \mathbf{X}(t) \right) \Big|_{L} + \frac{h^2}{2!} \left(\frac{d^2}{dt^2} \mathbf{X}(t) \right) \Big|_{L} + \frac{h^3}{3!} \left(\cdots \right) + \cdots$
- Euler's method:

$$\mathbf{X}(t_0 + h) = \mathbf{X}_0 + h f(\mathbf{X}_0, t_0) \quad \dots + O(h^2)$$
 error

 $h \rightarrow h/2 \Rightarrow error \rightarrow error/4$ per step× twice as many steps $\rightarrow error/2$

- First-order method: Accuracy varies with h
 - To get 100x better accuracy need 100x more steps

The Stiffness Issue

- What relative stiffness do we want for the different springs in the network?
- Cloth is barely elastic, shouldn't stretch so much!
- Inverse relationship between stiffness & Δt
- We really want a constraints (not springs)
- Many numerical solutions
 - reduce Δt
 - use constraints
 - implicit integration
 - **–** ...

How would you simulate a string?

- Springs link the particles. Problems?
 - Stretch, actual length will be greater than rest length
 - Numerical oscillation

• Rigid, fixed-length bars link the particles

- Dynamics &
- Constraints

(must be solved simultaneously)

The Discretization Problem

• What happens if we discretize our cloth more finely, or with a different mesh structure?

- Do we get the same behavior?
 - Usually not! It takes a lot of effort to design a scheme that does not depend on the discretization.
- Using (explicit) Euler, how many timesteps before a force propagates across the mesh?

Explicit vs. Implicit Integration

- With an explicit/forward integration scheme: $\mathbf{y}_{k+1} = \mathbf{y}_k + h \mathbf{g}(\mathbf{y}_k)$ we must use a very small timestep to simulate stable, stiff cloth.
- Alternatively we can use an implicit/backwards scheme:

$$\mathbf{y}_{k+1} = \mathbf{y}_k + h \ \mathbf{g}(\mathbf{y}_{k+1})$$
$$\mathbf{v}_k = \mathbf{v}_{k+1} - h \ \mathbf{g}(\mathbf{y}_{k+1})$$

 $\mathbf{y}_{k+l} = \mathbf{y}_k + h \ \mathbf{g}(\mathbf{y}_{k+l})$ $\mathbf{y}_k = \mathbf{y}_{k+l} - h \ \mathbf{g}(\mathbf{y}_{k+l})$ Solving one step is much more expensive (Newton's Method, Conjugate Gradients, ...) but overall faster than the thousands of explicit timesteps required for very stiff springs.

Questions?

David Baraff & Andrew Witkin Large Steps in Cloth Simulation SIGGRAPH 1998

· Dynamic motion driven by animation

Today

- · More on Cloth!
 - Taylor Series Analysis
 - Stiffness
 - Implicit Integration
- Implicit Surfaces
- Voxels
- · Collisions
- · Untangling Cloth

Implicit Surfaces

- For a sphere: $H(x,y,z) = x^2 + y^2 + z^2 - r^2$
- If H(x,y,z) = 0, on surface
- If H(x,y,z) > 0, outside surface
- If H(x,y,z) < 0, inside surface

Today

- More on Cloth!
 - Taylor Series Analysis
 - Stiffness
 - Implicit Integration
- Implicit Surfaces
- Voxels
- Collisions
- Untangling Cloth

Collisions

- Detection
- Response
- Overshooting problem (when we enter the solid)

Detecting Collisions

- Easy with implicit equations of surfaces
- H(x,y,z)=0 at surface
- H(x,y,z)<0 inside surface
- So just compute H and you know that you're inside if it's negative
- More complex with other surface definitions

Collision Response

- tangential velocity v_t unchanged
- normal velocity v_n reflects:

$$v = v_t + v_n$$
$$v \leftarrow v_t - \varepsilon v_n$$

- coefficient of restitution (1 for elastic, 0 for plastic)
- change of velocity = $-(1+\epsilon)v$
- change of momentum $Impulse = -m(1+\epsilon)v$

Collisions - Overshooting

- Usually, we detect collision when it's too late: we're already inside
- · Solutions: back up
 - Compute intersection point
 - Compute response there
 - Advance for remaining fractional time step
- Other solution: Quick and dirty fixup
 - Just project back to object closest point

Collision Detection for Solids

- How to detect collision between 2 polyhedra?
- Need an inside/outside test
- Test if a vertex is inside the other polyhedron
- But treat also edge-edge intersection

Cost of Detection?

- Test each edge with each face?
 - $-O(N^2)$
- How would you detect collision between two bunnies?
 - O(N²) is too expensive!
 - Use spatial hierarchy

backtracking

fixing

Conservative Bounding Region

Conservative Bounding Regions

Overlap test

- Overlap between two axis-aligned boxes?
 - Check if the intervals along the 3 dimensions overlap
- Overlap test between two spheres?
 - D(center₁, center₂) < r₁+r₂

General Collision Detection

- Put a hierarchy around your objects
- Use the fast overlap test recursively
- Handle exact case at the leaves (when necessary)
- More difficult for self-collision (e.g. cloth)
 - Because there is more overlap

Reduced Deformation

Doug L. James & Dinesh K. Pai BD-Tree: Output-Sensitive Collision Detection for Reduced Deformable Models SIGGRAPH 2004

- Collisions are expensive
- Deformation is expensive
- This is a lot of geometry!
- Simplify the simulation model

Cloth Collision

Robert Bridson, Ronald Fedkiw & John Anderson Robust Treatment of Collisions, Contact and Friction for Cloth Animation SIGGRAPH 2002

- A cloth has many points of contact
- Stays in contact
- Requires
 - Efficient collision detection
 - Efficient numerical treatment (stability)

Today

- More on Cloth!
 - Taylor Series Analysis
 - Stiffness
 - Implicit Integration
- Implicit Surfaces
- Voxels
- Collisions
- Untangling Cloth

Reading for Today: • Baraff, Witkin & Kass, Untangling Cloth, SIGGRAPH 2003

Reading for Friday 2/8:

• "Realistic Animation of Liquids", Foster & Metaxas, 1996

• Post a comment or question on the LMS discussion by 10am on Friday 2/8

Reading for Tuesday 2/12:

• "Synthesis of Complex Dynamic Character Motion from Simple Animation", Liu & Popović, 2002.

• Post a comment or question on the LMS discussion by 10am on Tuesday 2/12