
1

Real-Time
Shadows

Last Time?
x'

ω'

L(x',ω') = E(x',ω') + ∫ρx'(ω,ω')L(x,ω)G(x,x')V(x,x') dA
• The Rendering Equation

• Progressive Radiosity
• Adaptive Subdivision
• Discontinuity Meshing
• Hierarchical Radiosity

Today
• Why are Shadows Important?
• Planar Shadows
• Projective Texture Shadows
• Shadow Maps
• Shadow Volumes

Why are Shadows Important?
• Depth cue
• Scene

Lighting
• Realism
• Contact

points

Shadows as a Depth Cue For Intuition about Scene Lighting
• Position of the light (e.g. sundial)
• Hard shadows vs. soft shadows
• Colored lights
• Directional light vs. point light

2

Today
• Why are Shadows Important?
• Planar Shadows
• Projective Texture Shadows

– Shadow View Duality
– Texture Mapping

• Shadow Maps
• Shadow Volumes

Cast Shadows on Planar Surfaces
• Draw the object primitives a second time,

projected to the ground plane

Limitations of Planar Shadows
• Does not produce self-shadows, shadows cast on

other objects, shadows on curved surfaces, etc.

Shadow/View Duality
• A point is lit if it

is visible from
the light source

• Shadow
computation
similar to view
computation

Texture Mapping
• Don't have to represent everything with geometry

Fake Shadows using Projective Textures

• Separate obstacle and receiver
• Compute b/w image of obstacle from light
• Use image as projective texture for each receiver
Image from light source BW image of obstacle Final image

Figure from Moller & Haines “Real Time Rendering”

3

Projective Texture Shadow Limitations

• Must specify occluder & receiver
• No self-shadows
• Resolution

Figure from Moller & Haines “Real Time Rendering”

Questions?

Today
• Why are Shadows Important?
• Planar Shadows
• Projective Texture Shadows
• Shadow Maps
• Shadow Volumes

Shadow Maps
• In Renderman

– (High-end production software)

Shadow Mapping
• Texture mapping with

depth information
• Requires 2 passes

through the pipeline:
– Compute shadow

map (depth from
light source)

– Render final image,
check shadow map
to see if points are
in shadow

Foley et al. “Computer Graphics Principles and Practice”

Shadow Map Look Up
• We have a 3D point (x,y,z)WS

• How do we look up
the depth from the
shadow map?

• Use the 4x4
perspective projection
matrix from the light
source to get (x',y',z')LS

• ShadowMap(x',y') < z'?
Foley et al. “Computer Graphics Principles and Practice”

(x,y,z)WS(x',y',z')LS

4

Limitations of Shadow Maps
1. Field of View

2. Bias (Epsilon)

3. Aliasing

1. Field of View Problem
• What if point to

shadow is outside
field of view of
shadow map?
– Use cubical

shadow map
– Use only

spot lights!

2. The Bias (Epsilon) Nightmare
• For a point visible

from the light source
ShadowMap(x’,y’) ≈ z’

• How can we
avoid erroneous
self-shadowing?
– Add bias (epsilon)

2. Bias (Epsilon) for Shadow Maps
ShadowMap(x’,y’) + bias < z’
Choosing a good bias value can be very tricky

Correct image Not enough bias Way too much bias

3. Shadow Map Aliasing
• Under-sampling of the shadow map
• Reprojection aliasing – especially bad when the

camera & light are opposite each other

3. Shadow Map Filtering
• Should we filter the depth?

(weighted average of neighboring depth values)
• No... filtering depth is not meaningful

5

3. Percentage Closer Filtering
• Instead filter the result of the test

(weighted average of comparison results)
• But makes the bias issue more tricky

3. Percentage Closer Filtering
• 5x5 samples
• Nice antialiased

shadow
• Using a bigger

filter produces
fake soft
shadows

• Setting bias
is tricky

Projective Texturing + Shadow Map

Eye’s ViewLight’s View Depth/Shadow Map

Images from Cass Everitt et al.,
“Hardware Shadow Mapping”

NVIDIA SDK White Paper

Shadows in Production
• Often use

shadow maps
• Ray casting as

fallback in case
of robustness
issues

Hardware Shadow Maps
• Can be done with hardware texture mapping

– Texture coordinates u,v,w generated using 4x4 matrix
– Modern hardware permits tests on texture values

Questions?

6

Today
• Why are Shadows Important?
• Planar Shadows
• Projective Texture Shadows
• Shadow Maps
• Shadow Volumes

– The Stencil Buffer

Stencil Buffer
• Tag pixels in one rendering pass to

control their update in subsequent
rendering passes
– "For all pixels in the frame buffer" →

"For all tagged pixels in the frame buffer"

• Can specify different rendering
operations for each case:
– stencil test fails
– stencil test passes & depth test fails
– stencil test passes & depth test passes

frame buffer

depth buffer

stencil buffer

Stencil Buffer – Real-time Mirror
• Clear frame, depth & stencil buffers
• Draw all non-mirror geometry to

frame & depth buffers
• Draw mirror to stencil buffer, where

depth buffer passes
• Set depth to infinity, where stencil

buffer passes
• Draw reflected geometry to

frame & depth buffer, where
stencil buffer passes

See NVIDIA's stencil buffer tutorial
http://developer.nvidia.com

also discusses blending, multiple
mirrors, objects behind mirror, etc…

without
stencil
buffer:

reflected
geometry

Shadow Volumes
• Explicitly represent the volume

of space in shadow
• For each polygon

– Pyramid with point
light as apex

– Include polygon to cap
• Shadow test similar

to clipping

Shadow Volumes
• If a point is inside a shadow

volume cast by a particular light,
the point does not receive any
illumination from that light

• Cost of naive
implementation:
#polygons * #lights

Shadow Volumes
• Shoot a ray from the eye to

the visible point
• Increment/decrement a

counter each time we
intersect a shadow
volume polygon
(check z buffer)

• If the counter ≠ 0,
the point is
in shadow

+1-1

+1

7

Shadow Volumes w/ the Stencil Buffer
Initialize stencil buffer to 0
Draw scene with ambient light only
Turn off frame buffer & z-buffer updates
Draw front-facing shadow polygons

If z-pass → increment counter
Draw back-facing shadow polygons

If z-pass → decrement counter
Turn on frame buffer updates
Turn on lighting and

redraw pixels with
counter = 0

0
+2

+1

If the Eye is in Shadow...
• ... then a counter of 0 does

not necessarily mean lit
• 3 Possible Solutions:

1. Explicitly test eye
point with respect
to all shadow volumes

2. Clip the shadow
volumes to the
view frustum

3. "Z-Fail" shadow
volumes

-1
0

-1

1. Test Eye with Respect to Volumes
• Adjust initial

counter value

Expensive

0
+1

0

+1

2. Clip the Shadow Volumes
• Clip the shadow volumes to the view frustum

and include these new polygons
• Messy CSG

3. "Z-Fail" Shadow Volumes
Start at infinity

...

Draw front-facing shadow polygons
If z-fail, decrement counter

Draw back-facing shadow polygons
If z-fail, increment counter

...
0

+1

0

3. "Z-Fail" Shadow Volumes

0
+1

0

• Introduces problems
with far clipping plane

• Solved by clamping the
depth during clipping

8

Optimizing Shadow Volumes
• Use silhouette edges only (edge where

a back-facing & front-facing polygon meet)

L

A

Limitations of Shadow Volumes
• Introduces a lot of new geometry
• Expensive to rasterize long skinny triangles
• Limited precision of stencil buffer (counters)

– for a really complex scene/object,
the counter can overflow

• Objects must be watertight to use silhouette trick
• Rasterization of polygons sharing an edge

must not overlap & must not have gap

Questions?
• From a previous quiz: Check the boxes to indicate the

features & limitations of each technique
• “Rendering Fake Soft Shadows with

Smoothies”, Chan & Durand, 2003.

Reading for Today:

shadow volumes shadow volumes w/ “smoothies”

• “Ray Tracing on Programmable Graphics Hardware
Purcell”, Buck, Mark, & Hanrahan SIGGRAPH 2002

Reading for Tuesday 3/18:

Post a comment or question on the LMS
discussion by 10am on Tuesday 3/18

Looking Ahead…
• Final Project Proposals due 3/20

– Summary
– Related Work Survey
– Timeline of Tasks

• Homework 4
– (probably) Stencil Buffer Reflections
– (probably) Shadow Volumes
– (probably) something with Cg

