Programmable GPUS

Last Time:
- o & "‘:'.'::.'“.':11’.“:?.1'..;':"'““ \\Q\

Transformations

Illumination
(Shading)

Viewing Transformation

(Perspective / Orthographic) e (5 raph ics Pi pe| ine
Clipping . C||pp|ng ’4'_’T'7_
Projection » Rasterization - /

(to Screen Space)

Scan Conversion X2:y2) -

(Rasterization) :
Visibility / Display :

Oy)

Today

« Modern Graphics Hardware

» Cg Programming Language

Gouraud Shading vs. Phong Normal
Interpolation

« Bump, Displacement, & Environment Mapping
Cg Examples

Modern Graphics Hardware

« High performance through
— Parallelism
— Specialization
- No data dependency data parallelism
— Efficient pre-fetching

Geometry
"\‘ LJT—l Rasterization task %}
i = parallelism E;E.
ﬁ ! Fragment
.; Display

Programmable Graphics Hardware

» Geometry and pixel (fragment) stage
become programmable
— Elaborate appearance

— More and more general-purpose
computation (GPU hacking)

El. EEl.EL.El ElR

Modern Graphics Hardware

e 2005
— About 4-6 geometry units
— About 16 fragment units
— Deep pipeline (~800 stages)
— 600 million vertices/second
- 6 billion texels/second

* NVIDIA GeForce 9 (Feb 2008)
- ~1 TFLOPS
— 32/64 stream processors
- 512 MB/1GB memory

» ATI Radeon R700 (20087?)
— 480 stream processing units

Today

Emerging Languages

« Modern Graphics Hardware

« Cg Programming Language

Gouraud Shading vs. Phong Normal
Interpolation

» Bump, Displacement, & Environment Mapping
Cg Examples

* RTSL (real-time shading language)
NVIDIA - Cg (C for graphics)
3Dlabs - 3DLSL

OpenGL ARB - GLSL (OpenGL 2.0)
Microsoft - HLSL

Cg Design Goals

Cg Design

““Cg: A system for programming graphics

* Ease of programming hardware in a C-like language™
Portablllty Mark et al. SIGGRAPH 2003

Complete support for hardware functionality
* Performance

Minimal interference with application data
Ease of adoption

Extensibility for future hardware

« Support for non-shading uses of the GPU

» Cg was designed as a “hardware-focused
general-purpose language rather than a domain-
specific shading language”

« Multi-program model for Cg
to match hardware:

archileciumnes)
vertex and fragment proces-

““Cg: A system for programming graphics
hardware in a C-like language™
Mark et al. SIGGRAPH 2003

Cg Design

Cg compiler vs. GPU assembly

» Hardware is changing rapidly...
no single standard
« Specify “profile” for each hardware
— May omit support of some language capabilities
(e.g., texture lookup in vertex processor)
* Use hardware virtualization or emulation?
— “Performance would be so poor it would
be worthless for most applications”
— Well, it might be ok for general purpose
programming (not real-time graphics)

« Can inspect the assembly language produced by
Cg compiler and perform additional
optimizations by hand
— Generally once development is complete

(& output is correct)
— Using Cg is easier than writing GPU
assembly from scratch

(Typical) Language Design Issues

 Parameter binding
* Call by reference vs. call by value

« Data types: 32 bit float, 16 bit float, 12 bit fixed
& type-promotion (aim for performance)

« Specialized arrays or general-purpose arrays
— float4 x vs. float x[4]

* Indirect addressing/pointers (not allowed...)
 Recursion (not allowed...)

Data flow in Cg

« Sample vertex program: input/output through
vertex position & texture

\foordinates

void simpleTranaformllald sha@etPosition 7 POSITION,
N eolar : COLOR,
iald decalCoard : TEXUUHIRINY,
wul a4 ipPosition + POSITION,
wut Meald oColor : UDLOR,
infrequently) ot featd oDc.:an-’Joord : TEXCOORI,
. uniform fleal brightness,
Changmg uniform featdnd medelViewProjection)

state variables

clipPosition = mulimedelViewProjection, cbjectPosition);
aColor = brightnesa * color;
oDecalCoord = decalCoord;

'

Today

» Modern Graphics Hardware

» Cg Programming Language

Gouraud Shading vs. Phong Normal
Interpolation

« Bump, Displacement, & Environment Mapping
Cg Examples

Remember Gouraud Shading?

* Instead of shading with the normal of the triangle,
shade the vertices with the average normal and
interpolate the color across each face

®

Illusion of a smooth
surface with smoothly
varying normals

Phong Normal Interpolation otprong sading

« Interpolate the average vertex normals across
the face and compute per-pixel shading

Must be
renormalized

Bump Mapping

« Use textures to alter the surface normal
— Does not change the actual shape of the surface
— Just shaded as if it were a different shape

Sphere w/Diffuse Texture Swirly Bump Map Sphere w/Diffuse Texture & Bump Map

Bump Mapping

Another Bump Map Example

* Treat the texture as a single-valued height function

» Compute the normal from the partial derivatives in the
texture

Bump Map

Cylinder w/Diffuse Texture Map Cylinder wiTexture Map & Bump Map

What's Missing?

Displacement Mapping

* There are no bumps on
the silhouette of a
bump-mapped object

* Bump maps
don’t allow
self-occlusion
or self-shadowing

« Use the texture map to actually move the surface point
» The geometry must be displaced before visibility is determined

Displacement Mapping

Displacement Mapping

Image from:

Geometry Caching for
Ray-Tracing Displacement Maps
EGRW 1996
Matt Pharr and Pat Hanrahan

note the detailed shadows
cast by the stones

Ken Musgrave

Environment Maps

* We can simulate reflections by using the direction of the reflected
ray to index a spherical texture map at “infinity".

« Assumes that all reflected rays
begin from the same point.

View Paint

|Enviranment map
|ana sphere

Environment Mapping Example

Terminator 1l

Questions?

; s . -
Image by Henrik Wann Jensen
Environment map by Paul Debevec

What's the Best Chart?

Largivrde Map

Texture Maps for lllumination

« Also called "Light Maps"

Today

Modern Graphics Hardware

« Cg Programming Language

Gouraud Shading vs. Phong Normal
Interpolation

* Bump, Displacement, & Environment Mapping
Cg Examples

Reading for Today:

» “MoXi: Real-Time Ink Dispersion in Absorbent Paper”,
Chu & Tai, SIGGRAPH 2005

4

Post a comment or question on the LMS
discussion by 10am on Friday 3/21

Reading for Tuesday (3/25)

Veach & Guibas "Optimally Combining Sampling
Techniques for Monte Carlo Rendering" SIGGRAPH 95

Naive sampling strategy Optimal sampling strategy

