
Realistic Billiards Simulation with Variable Time-Step

Luke Anderson
Rensselaer Polytechnic Institute, Troy, NY

anderr4@rpi.edu

Abstract

This paper presents a method for creating a
robust system for modeling physical interactions
between objects. The system avoids problems
such as objects escaping or passing through
each other due to undetected collisions caused
by excessive velocities or insufficient time
resolution.

1 Introduction

In the example presented here, the method is
applied to pocket billiards (“pool”). We will
describe all of the parts required to create the
pool simulation. We will also demonstrate a
method for increasing the visual believability of
the simulation.

2 The System

The pool balls in the simulation are represented
by a collection of spheres, and the pool table is
represented by a rectangle. In order to make the
pool simulation come to life, we will use a
model that is well-suited to detecting physical
interactions between the table and the balls.

2.1 Pool Balls

Each pool ball has a vector for its position and a
vector for its velocity. As specified by the
World Pool-Billiard Association, the balls have
a radius of 2.25 inches and weigh 5.5 oz. [5]

2.2 Pool Table

The pool table is represented by four distinct
points in 3D space, one for each corner,
effectively making up a rectangle. The lines
formed between two points are used as the
edges of the table. The table is centered at the
origin, and the surface lies in the plane
perpendicular to the Y-axis. It is an 8-foot table,
measuring 92 inches by 46 inches as specified
by the WPA. [5]

2.3 Pool Cue

The pool cue is represented by an angle and a
magnitude, representing the direction of the cue
stick with respect to the cue ball, and the
intensity of the strike. In the simulation, this
vector is represented as a red line.

3 Interactions

There are four distinct interactions we are
concerned with in this simulation: collisions
between ball and table, collisions between ball
and ball, frictional forces between ball and
table, and the initial impact between the cue and
cue ball.

3.1 Ball/Wall Collisions

Since each sphere has a position and velocity
vector, we can think of it as a parametric ray
with an origin and direction. The same can be
done for the boundaries of the table: given two
corners, we can create a ray representing the

mailto:anderr4@rpi.edu

edge. Thus, the ball/wall collision simplifies
down to a simple collision between two rays.
The parametric equations for the rays, where O
is the origin, D is the direction, and T is the
parameter, are:

22222

11111

)(

)(

TDOTR

TDOTR

⋅+=
⋅+=

At the intersection of the two rays, the X and Z
dimensional components must be equal:

zzxz

xxxx

DTODTO

DTODTO

,22,2,11,1

,22,2,11,1

⋅+=⋅+

⋅+=⋅+

Solving for the T values gives:

() ()

() ()
zxxz

xxzzzx

zxxz

xxzzzx

DDDD

OODOOD
T

DDDD

OODOOD
T

,2,1,2,1

,2,1,1,1,2,1
2

,2,1,2,1

,2,1,2,1,2,2
1

⋅−⋅

−⋅+−⋅
=

⋅−⋅

−⋅+−⋅
=

We only want to consider positive T values,
since time is only moving forward. So, if T1 and
T2 are both positive, the ball and the wall are
going to collide, and we have the exact point in
time of their intersection.

Once a ball/wall collision has occurred, the
ball’s velocity must be reflected about the
normal of the table edge. The normal can be
found by taking the cross product of the edge
vector with the up vector 0,1,0 . The reflection

can be found using the following equation,
where v is the velocity and n is the normal.

()nvnvR ⋅⋅−= 2

3.2 Ball/Ball Collisions

For determining when two spheres will collide,
the simulation uses an implementation of the
algorithm described in “Simply Bounding-
Sphere Collision Detection” [3]. This algorithm
solves the quadratic equation representing the
intersection of spheres:

() 0)2(2 2222 =−+⋅+⋅+⋅ rdpTdvdpTdv

First, we calculate the difference in velocities
and positions between the two spheres:

12

12

ppdp

vvdv

−=
−=

The dot product of dp with itself represents the
square of its length. If this value is less than the
square of the sphere’s diameter, then the spheres
have already intersected:

0)2(
?

2 ≤−⋅= rdpdppp

Next, we calculate the dot product of dv and dp.
If this result is greater than zero, then the
spheres are moving away from each other:

0
?

≥⋅= dpdvpv

Finally, we compute the dot product of dv with
itself and the determinant of the quadratic
equation. If the determinant is positive, then the
spheres intersect, and we can solve for T:

() ()

vv

dpv
T

vvpppvpvd

dvdvvv

−−
=

≥⋅−⋅=

⋅=

0
?

This gives us the exact
amount of time that will
pass until the spheres
collide. Once we know
that a ball/ball collision
has occurred, we must
update each ball’s
velocity vector. As
described in [2], each
sphere has a normal and
tangent vector.

We calculate the normal component by
subtracting the positions of the two spheres:

12 ppn −=

The tangential component is simply:

xyz nnnt ,,−=

tangent

normal

Since all of the spheres have equal mass, we
only need to consider their initial velocities. The
equations for the resulting velocities after the
collisions are:

() ()
() ()212

121

vttvnnv

vttvnnv

⋅⋅+⋅⋅=′
⋅⋅+⋅⋅=′

3.3 Physics

In modeling the physics in our system, we will
use two of the equations of motion.

The first equation is responsible for moving the
position of the balls based on their velocity,
taking into account the oppositional force of
friction:

2
0 2

1
atvtpp ++=

The second equation is responsible for reducing
the balls’ velocities due to the effects of friction:

atvv += 0

In our simulation, a will always be a negative
value, because nothing should be adding energy
to the system except for the initial strike of the
cue ball. The energy from this strike is added by
simply setting the velocity component of the cue
ball to the appropriate value.

3.4 Friction

There are two different types of frictional forces
that occur in our simulation: static friction and
kinetic friction. Static friction occurs when a
ball is rolling across the table and is a very small
value, while kinetic friction occurs when a ball
is sliding across the table and is a slightly larger
value. When a ball’s kinetic energy exceeds that
required to overcome the static frictional force,
it is acted on by kinetic friction as it slides
across the table. However, once the ball’s speed
drops below the threshold of the kinetic
frictional force, it begins to roll and is acted on
only by static friction. [4]

4 Time

Our simulation has to progress through time.
The balls have specific velocities and positions,
which change over time according to the
physical laws of motion. This raises the
question: how do we represent the passage of
time in our system?

4.1 The Time-Step Problem

Physics simulations typically use a discrete
time-step value, which represents the amount of
time passed since the last physics update. For
example, an object moving at 100in/s is
traveling one inch every 0.01 seconds, so using
a time-step of 0.01 would cause the object to be
moved one inch on every iteration.

While this additive time-step method may be
useful for simple motions, it presents problems
when trying to create the interactions required
for our realistic simulation. Most critically, the
quantification of time requires collision
detection to be preemptive (checking where the
object will be after the next timestep, and
adjusting for a collision) or corrective (checking
for collisions that have just occurred, and fixing
the objects involved). Both detection methods
are difficult to implement successfully and are
likely to have problems detecting collisions with
very fast-moving or very thin objects.

A discrete time-step also raises problems of
granularity: how small should the time-step be,
in order to efficiently balance rendering speed
and physical accuracy? A small time-step will
be more accurate, but it will also dramatically
increase the processing required. Likewise, a big
time-step will be less accurate but much faster
to calculate.

Finally, when we consider that the animation
may not be rendered at a constant frame rate, a
third problem arises. How do we maintain time
at a consistent speed? In real life, the speed of
time does not change. However, the frame rate
in our simulation may change, and if the time-
step is incremented a fixed amount after
drawing each frame, the speed of the animation
could rapidly fluctuate.

4.2 The Time-Step Solution

For our real-time simulation, pool balls will
have a very wide range of velocities (the fast-
moving cue ball could hit another non-moving
ball). We need to guarantee that they can never
pass through each other. Therefore, the
problems associated with an additive time-step
system are unacceptable and we have to find
another way to model time in our system.

First, we want the simulation to run in real-time.
In order to do this, we determine how much
actual time has passed between each rendered
frame of the animation using the high-resolution
timer of the CPU. This gives us an accurate
representation of how much time has actually
passed, and we use this as the T∆ value. This
value represents how far we need to progress the
simulation.

At this step, we iterate through all of the balls in
the system and determine the time until the next
ball/wall or ball/ball collision using the
algorithms described in sections 3.1 and 3.2.
Then, instead of incrementing by a fixed
timestep, we progress the simulation up until the
time of the next collision. At this point, we run
the collision algorithm which sets the new
directions of the objects involved. Finally, we
recursively call the progress function with any
remaining time, until all of the original T∆
value has been added. Here is pseudocode of the
algorithm:

1 Function Progress(float T)
2
3 For Each Ball i
4 If Hit(Ball[i], Table, Tn) <= T
5 Hits.Add(Table)
6 End If
7 For Each Ball j
8 If Hit(Ball[i], Ball[j], Tn) <= T
9 Hits.Add(Ball[j])
10 End If
11 Loop
12 Loop
13
14 For Each Ball i
15 Ball[i].Move(Tn)
16 Loop
17
18 For Each Table Hit

19 If HitPocket(Ball)
20 Remove(Ball)
21 Else
22 Reflect(Ball)
23 End If
24 Loop
25
26 For Each Ball Hit
27 Collide(Ball1, Ball2)
28 Loop
29
30 Progress(T - Tn)
31
32 End Function

This method prevents any of the typical
collision detection problems from occurring.
Instead of incrementing time and trying to
figure out when collisions will occur or have
occurred, we increment time exactly until the
next collision and adjust for it. Balls cannot
escape the table, nor can they pass through each
other.

This also makes the frame rate completely
independent of the system, since the time-step
can be any value. A large value, like 0.25
seconds, will cause the same result as many
small values, like 0.01 seconds. In this way, the
simulation is deterministic.

5 Randomization

Even though the results of the simulation are
accurate, they may appear unrealistic. This is
because, given the same starting conditions, the
same input to the system will result in exactly
the same result each time—it is too accurate. To
make the actions of the simulation more
believable, we add random perturbations to the
normals in the collision correction algorithms as
described in [1]. This random variation can be
accounted for in reality (for example,
imperfections in the table or balls), so the
simulation still appears plausible but delivers
different results each time. This puts the
finishing touch on our realistic billiards
simulation.

6 Screenshots

Figure 1: Default layout
The red vector represents the direction and intensity of the cue stick. The cue ball is placed at the one-

quarter mark of the pool table in the horizontal direction, and centered in the vertical direction.

Figure 2: Rack
The balls are racked 1/10” apart. Without randomization, hitting it the same way will cause it to break

the same way every time.

Figure 3: Break
The balls scatter realistically after being hit by the cue ball.

Figure 4: Velocity Vectors
The blue vectors show the direction and speed of each ball in the simulation.

7 References
[1]. Barzel, Ronen, John F. Hughes, and Daniel N. Wood. Plausible Motion Simulation for Computer Graphics

Animation. 1996. University of Washington. <http://www.ronenbarzel.org/papers/plausible/plausible.pdf>.

[2]. Berchek, Chad. “2-Dimensional Elastic Collisions Without Trigonometry.” 2006.
<http://www.geocities.com/vobarian/2dcollisions/2dcollisions.pdf>.

[3]. Dopertchouk, Oleg. “Simple Bounding-Sphere Collision Detection.” 12 Nov. 2000.
<http://www.gamedev.net/reference/articles/article1234.asp>.

[4]. Lee, Soo. “Physics of Pool: Drag Force.” 2000. Oracle ThinkQuest Library.
<http://library.thinkquest.org/C006300/data/seven3_1.htm>.

[5]. “WPA Tournament Table & Equipment Specifications.” World Pool-Billiard Association. Nov. 2001.
<http://www.wpa-pool.com/index.asp?content=rules_spec

