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Abstract

This paper presents a method for creating a
robust system for modeling physical interactions 
between objects. The system avoids problems
such as objects escaping or passing through 
each other due to undetected collisions caused 
by excessive velocities or insufficient time 
resolution.

1 Introduction

In the example presented here, the method is
applied to pocket billiards (“pool”). We will 
describe all of the parts required to create the
pool simulation. We will also demonstrate a 
method for increasing the visual believability of 
the simulation.

2 The System

The pool balls in the simulation are represented 
by a collection of spheres, and the pool table is 
represented by a rectangle. In order to make the 
pool simulation come to life, we will use a 
model that is well-suited to detecting physical 
interactions between the table and the balls.

2.1 Pool Balls

Each pool ball has a vector for its position and a 
vector for its velocity. As specified by the 
World Pool-Billiard Association, the balls have 
a radius of 2.25 inches and weigh 5.5 oz. [5]

2.2 Pool Table

The pool table is represented by four distinct 
points in 3D space, one for each corner, 
effectively making up a rectangle. The lines 
formed between two points are used as the 
edges of the table. The table is centered at the 
origin, and the surface lies in the plane 
perpendicular to the Y-axis. It is an 8-foot table, 
measuring 92 inches by 46 inches as specified 
by the WPA. [5]

2.3 Pool Cue

The pool cue is represented by an angle and a 
magnitude, representing the direction of the cue 
stick with respect to the cue ball, and the 
intensity of the strike. In the simulation, this 
vector is represented as a red line.

3 Interactions

There are four distinct interactions we are 
concerned with in this simulation: collisions 
between ball and table, collisions between ball 
and ball, frictional forces between ball and 
table, and the initial impact between the cue and 
cue ball.

3.1 Ball/Wall Collisions

Since each sphere has a position and velocity 
vector, we can think of it as a parametric ray 
with an origin and direction. The same can be 
done for the boundaries of the table: given two 
corners, we can create a ray representing the 
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edge. Thus, the ball/wall collision simplifies 
down to a simple collision between two rays. 
The parametric equations for the rays, where O
is the origin, D is the direction, and T is the 
parameter, are:
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At the intersection of the two rays, the X and Z 
dimensional components must be equal:
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Solving for the T values gives:
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We only want to consider positive T values, 
since time is only moving forward. So, if T1 and 
T2 are both positive, the ball and the wall are 
going to collide, and we have the exact point in 
time of their intersection.

Once a ball/wall collision has occurred, the 
ball’s velocity must be reflected about the 
normal of the table edge. The normal can be 
found by taking the cross product of the edge 
vector with the up vector 0,1,0 . The reflection 

can be found using the following equation, 
where v is the velocity and n is the normal.
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3.2 Ball/Ball Collisions

For determining when two spheres will collide, 
the simulation uses an implementation of the 
algorithm described in “Simply Bounding-
Sphere Collision Detection” [3]. This algorithm 
solves the quadratic equation representing the 
intersection of spheres:
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First, we calculate the difference in velocities 
and positions between the two spheres:
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The dot product of dp with itself represents the 
square of its length. If this value is less than the 
square of the sphere’s diameter, then the spheres 
have already intersected:
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Next, we calculate the dot product of dv and dp. 
If this result is greater than zero, then the 
spheres are moving away from each other:
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Finally, we compute the dot product of dv with 
itself and the determinant of the quadratic 
equation. If the determinant is positive, then the 
spheres intersect, and we can solve for T:
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This gives us the exact 
amount of time that will 
pass until the spheres 
collide. Once we know 
that a ball/ball collision 
has occurred, we must 
update each ball’s 
velocity vector. As 
described in [2], each 
sphere has a normal and 
tangent vector.

We calculate the normal component by 
subtracting the positions of the two spheres:
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The tangential component is simply:
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Since all of the spheres have equal mass, we 
only need to consider their initial velocities. The 
equations for the resulting velocities after the 
collisions are:
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3.3 Physics

In modeling the physics in our system, we will 
use two of the equations of motion.

The first equation is responsible for moving the 
position of the balls based on their velocity, 
taking into account the oppositional force of 
friction:
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The second equation is responsible for reducing 
the balls’ velocities due to the effects of friction:

atvv += 0

In our simulation, a will always be a negative 
value, because nothing should be adding energy 
to the system except for the initial strike of the 
cue ball. The energy from this strike is added by 
simply setting the velocity component of the cue 
ball to the appropriate value.

3.4 Friction

There are two different types of frictional forces 
that occur in our simulation: static friction and 
kinetic friction. Static friction occurs when a 
ball is rolling across the table and is a very small 
value, while kinetic friction occurs when a ball 
is sliding across the table and is a slightly larger 
value. When a ball’s kinetic energy exceeds that 
required to overcome the static frictional force, 
it is acted on by kinetic friction as it slides 
across the table. However, once the ball’s speed 
drops below the threshold of the kinetic 
frictional force, it begins to roll and is acted on 
only by static friction. [4]

4 Time

Our simulation has to progress through time. 
The balls have specific velocities and positions, 
which change over time according to the 
physical laws of motion. This raises the 
question: how do we represent the passage of 
time in our system?

4.1 The Time-Step Problem

Physics simulations typically use a discrete 
time-step value, which represents the amount of 
time passed since the last physics update. For 
example, an object moving at 100in/s is
traveling one inch every 0.01 seconds, so using 
a time-step of 0.01 would cause the object to be 
moved one inch on every iteration.

While this additive time-step method may be 
useful for simple motions, it presents problems 
when trying to create the interactions required 
for our realistic simulation. Most critically, the 
quantification of time requires collision 
detection to be preemptive (checking where the 
object will be after the next timestep, and 
adjusting for a collision) or corrective (checking 
for collisions that have just occurred, and fixing 
the objects involved). Both detection methods 
are difficult to implement successfully and are 
likely to have problems detecting collisions with 
very fast-moving or very thin objects.

A discrete time-step also raises problems of 
granularity: how small should the time-step be, 
in order to efficiently balance rendering speed 
and physical accuracy? A small time-step will 
be more accurate, but it will also dramatically 
increase the processing required. Likewise, a big 
time-step will be less accurate but much faster 
to calculate.

Finally, when we consider that the animation 
may not be rendered at a constant frame rate, a 
third problem arises. How do we maintain time 
at a consistent speed? In real life, the speed of 
time does not change. However, the frame rate 
in our simulation may change, and if the time-
step is incremented a fixed amount after 
drawing each frame, the speed of the animation 
could rapidly fluctuate.



4.2 The Time-Step Solution

For our real-time simulation, pool balls will 
have a very wide range of velocities (the fast-
moving cue ball could hit another non-moving 
ball). We need to guarantee that they can never 
pass through each other. Therefore, the 
problems associated with an additive time-step 
system are unacceptable and we have to find 
another way to model time in our system.

First, we want the simulation to run in real-time. 
In order to do this, we determine how much 
actual time has passed between each rendered 
frame of the animation using the high-resolution
timer of the CPU. This gives us an accurate 
representation of how much time has actually 
passed, and we use this as the T∆ value. This 
value represents how far we need to progress the 
simulation.

At this step, we iterate through all of the balls in 
the system and determine the time until the next 
ball/wall or ball/ball collision using the 
algorithms described in sections 3.1 and 3.2. 
Then, instead of incrementing by a fixed 
timestep, we progress the simulation up until the 
time of the next collision. At this point, we run 
the collision algorithm which sets the new 
directions of the objects involved. Finally, we 
recursively call the progress function with any 
remaining time, until all of the original T∆
value has been added. Here is pseudocode of the 
algorithm:

1 Function Progress(float T)
2
3 For Each Ball i
4 If Hit(Ball[i], Table, Tn) <= T
5 Hits.Add(Table)
6 End If
7 For Each Ball j 
8 If Hit(Ball[i], Ball[j], Tn) <= T
9 Hits.Add(Ball[j])
10 End If
11 Loop
12  Loop
13
14 For Each Ball i
15 Ball[i].Move(Tn)
16 Loop
17
18 For Each Table Hit

19 If HitPocket(Ball)
20 Remove(Ball)
21 Else
22 Reflect(Ball)
23 End If
24 Loop
25
26 For Each Ball Hit
27 Collide(Ball1, Ball2)
28 Loop
29
30 Progress(T - Tn)
31
32 End Function

This method prevents any of the typical 
collision detection problems from occurring. 
Instead of incrementing time and trying to 
figure out when collisions will occur or have 
occurred, we increment time exactly until the 
next collision and adjust for it. Balls cannot 
escape the table, nor can they pass through each 
other.

This also makes the frame rate completely 
independent of the system, since the time-step 
can be any value. A large value, like 0.25
seconds, will cause the same result as many 
small values, like 0.01 seconds. In this way, the 
simulation is deterministic.

5 Randomization

Even though the results of the simulation are 
accurate, they may appear unrealistic. This is 
because, given the same starting conditions, the 
same input to the system will result in exactly 
the same result each time—it is too accurate. To 
make the actions of the simulation more 
believable, we add random perturbations to the 
normals in the collision correction algorithms as 
described in [1]. This random variation can be 
accounted for in reality (for example, 
imperfections in the table or balls), so the 
simulation still appears plausible but delivers 
different results each time. This puts the 
finishing touch on our realistic billiards 
simulation.



6 Screenshots

Figure 1: Default layout
The red vector represents the direction and intensity of the cue stick. The cue ball is placed at the one-

quarter mark of the pool table in the horizontal direction, and centered in the vertical direction.

Figure 2: Rack
The balls are racked 1/10” apart. Without randomization, hitting it the same way will cause it to break 

the same way every time.



Figure 3: Break
The balls scatter realistically after being hit by the cue ball.

Figure 4: Velocity Vectors
The blue vectors show the direction and speed of each ball in the simulation.
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