
Automatic Smoothing of Quad & Triangle Meshes
Patrick Donnelly

Abstract

I present a methodology to create smooth

meshes using spline patches generated

automatically from the geometry of the mesh.

The intent is to create a smooth surface

across the entire mesh, which creates smooth

silhouette edges and is very useful for high

quality ray tracing. An additional goal was

that this methodology could be used on

meshes made out of triangle faces,

quadrilateral faces or a combination of both.

1. Introduction

1.1 Motivation

Ray tracing is a popular field in computer

graphics due to its ability to create stunningly

photorealistic renderings. However, in order

to create high quality renderings, high quality

meshes are a requirement, such as meshes

with a high polygon count or implicit

surfaces, otherwise visible artifacts will be

present due to the lack of information or

discontinuities. Additionally, high quality

meshes increase rendering time as more

complexity is introduced. Furthermore, one

alternative of using meshes made out of

splines can be both tedious and difficult to

setup without introducing discontinuities at

the seams. The goal of the smoothing method

in this paper is to remedy these issues using

pre-existing polygon mesh and guaranteeing

continuous normals (G1 continuity) across the

entire surface. Outside of ray tracing, this

method also has applications to Level of

Detail and mesh subdivision.

1.2 Related Work

The creation of smooth meshes from

polygonal meshes is not a new concept. The

problem has been solved for triangle meshes

in multiple ways, including using PN

Triangles [1] and bi-cubic splines [2].

Furthermore, a method of ray tracing cubic

Bezier patches interactively has been

developed by Benthin, Wald and Slusallek

[3].

2. Data Structures

2.1 Axis-Aligned Bounding Box Array

In order to efficiently raytrace the scene,

bounding boxes are used to drastically reduce

the number of costly face intersections. This

is even more important when dealing with

splines, which are particularly costly to

Smooth Bunny

(1k triangles)

Coarse Bunny

(1quads)

Smooth Bunny

(1k quads)

Coarse Bunny

(1k triangles)

compute. A slightly modified version of the

algorithm created by Kay-Kajiya [4] is used.

Only axis-aligned slabs are chosen and as

much pre-computation as possible is done, so

the end result is that minimal amounts of

math are needed to detect intersections

between the collision boxes and the ray.

Furthermore, while the bounding boxes are

hierarchical, they are stored in memory as a

depth-first array [5]. This speeds up the

collision detection by eliminating the need for

recursion and practically assuring good

memory cohesion during traversal.

2.2 “Smart” Edges

In addition to the typical data stored by

the half-edge data structure, edges keep useful

information such as the normal at the vertex,

the tangent to the plane defined by the normal

in the direction of the edge, and the length of

the edge. This information is very useful in

simplifying and optimizing the creation of the

control mesh for the spline patches.

In addition, for quad faces two “pseudo-

edges” are added across the diagonals to keep

the code consistent for all spline calculations.

3. Algorithms

3.1 Quad Face Control Mesh

Generation

The most important aspect of this

methodology is how it generates the control

mesh that defines the smooth spline for each

face. Cubic Bezier patches were chosen as

they have generally well understood behavior,

they give a good degree of control over the

surface and are obviously well suited for a

quad face. Here is the general flow of the

algorithm:

1. Calculate the blended normal for each

vertex. This is calculated by averaging

all the normals at the vertex for each

face surrounding it.

2. For each edge, find the tangents to the

planes defined by the blended normal

at that edge’s two vertices and in the

direction to the opposite vertex.

3. Extend these tangents out by the

length of the edge multiplied by the

tangent_scale, which for the best

results is found to be 0.3505466.

These points define the outer control

points for the control mesh of the face.

4. For each face diagonal, repeat steps 2

and 3 except with the tangent_scale in

step 3 multiplied by 2 . These points

define the interior control points of the

control mesh of the face.

5. Using the vertices for the corners of

the control mesh, the edges for the

outer control points and the diagonals

for the internal control points, a Bezier

patch can be generated.

The tangent_scale values were chosen as

they will produce a nearly perfectly

continuous smooth mesh out of a perfectly

regular quad mesh (i.e. a sphere is made out

of a cube).

One important note is that while the

patches generated are almost always

geometrically continuous across seams, the

normals defined by the patches are not

continuous across seams. In order to produce

continuous normals, which is necessary for

ray tracing, linear interpolation of normals is

used as decent approximation.

Source mesh and smooth mesh showing control mesh.

3.2 Solving for the Surface

Solving for a given parametric location

()tsP , on the Bezier patch given its control

points was handled through matrix math as

follows [6]:

[]





















⋅⋅=

⋅⋅=



















−

−

−−

=



















=

1

1,,,),(

0001

0033

0363

1331

2

3

23

3,32,31,30,3

3,22,21,20,2

3,12,11,10,1

3,02,01,00,0

t

t

t

MssstsP

BCBM

B

BBBB

BBBB

BBBB

BBBB

C

T

In the equations above, C represents the

control points as setup in the previous section,

B is the Bezier basis matrix and M is a matrix

that gets computed once and stored for

optimization. This calculation can be used to

discretize the mesh and to determine the point

of intersection with a ray.

3.3 PN Triangles

In order to handle triangles, the curved PN

triangles algorithm described by Alex

Vlachos was used [1]. A PN triangle will

generate a cubic Bezier surface automatically

from the vertex positions and normals, much

like my algorithm for quad faces. That paper

should be refered to for the implementation of

the algorithm.

3.4 Ray tracing

Due to time constraints, ray tracing was

performed by subdividing the mesh into

discrete faces and using Moller-Trumbore

ray-triangle intersection [7]. While this is

extremely inefficient it works well enough to

demonstrate the improvements of this

methodology. The algorithm proposed by

Benthin [3] could be exchanged and produce

much faster results.

4. Results

The results of the mesh smoothing

methodology are marvelous. Low quality

quad meshes with extremely rough silhouette

edges are made smooth with no rough

silhouette edges. All creases are removed and

the mesh as a whole looked much more

visibly pleasing.

The increase in quality of the mesh also

directly correlates to an increase in quality of

the ray tracing. Reflections and lighting were

the most obvious areas of improvement as the

smoothed positions and normals produced

much higher quality results.

Triangle meshes and hybrid meshes were

not extensively explored as the utility of being

able to smooth such meshes was realized to

be minimal as few hybrid meshes are in

existence (and none could be found!). A

simple mesh was created and seemed to work

out well enough, though the result was not as

expected.

5. Future Work

One obvious area for improvement

involves speeding up the ray tracing. That

would greatly improve the benefits of this

methodology, as there easily could be an

increase in speed over other similar methods

such as subdivision.

References

[1] Alex Vlachos , Jörg Peters , Chas Boyd ,

Jason L. Mitchell, Curved PN triangles,

Proceedings of the 2001 symposium on

Interactive 3D graphics, p.159-166, March

2001

[2] Toshio Ueshiba, Gerhard Roth,

"Generating Smooth Surfaces with Bicubic

Splines over Triangular Meshes: Toward

Automatic Model Building from Unorganized

3D Points," 3dim, pp.0302, Second

International Conference on 3-D Imaging and

Modeling (3DIM '99), 1999

[3] Carsten Benthin, Ingo Wald, and Philipp

Slusallek. Interactive Ray Tracing of Free-

Form Surfaces. ACM Afrigraph, 2004.

[4] Timothy L. Kay and James T. Kajiya.,

Ray tracing complex scenes. In Computer

Graphics, pages 269-278, ACM SIGGRAPH,

1986.

[5] Brian Smits, Efficiency issues for ray

tracing, Journal of Graphics Tools, v.3 n.2,

p.1-14, 1 February 1998

[6] Bézier Surfaces. 24 Apr. 2009

<http://homepages.inf.ed.ac.uk/rbf/CVonline/

LOCAL_COPIES/AV0405/

 DONAVANIK/Bezier.html>.

[7] Tomas Moller & Ben Trumbore, "Fast,

Minimum Storage Ray-Triangle

Intersection", J. Graphics Tools 2(1), 21-28,

1997

