
Music-based Procedural Generation of Plants

Jarrett Farnitano

Chris Jaeger

April 23rd, 2009

Introduction
This paper presents a model which generates plant imagery. However, unlike other methods which are
primarily based on the simple process of creating a plant through procedural generation, our goal is to
generate plants in accordance with the amplitude of sound. This growth forms a visualization that
represents the flow of the music, in relatively real-time.

Related Work
This paper was inspired by a previous project created by Jarrett, which simply uses input from a music
file to create a real-time image visualization.

The original plan was to work with fractals, much in the vein of the popular fern fractal. However, by
having a mutable growth, one cannot guarantee that the small subset is representative of the whole
shape, defeating the definition of a fractal.

We turned to procedural generation as an alternative, much in the same fashion as Prusinkiewicz et al [1,
2] and Smith [3]. Their papers were an inspiration for our method, rather than an actual source.

Motivation
We have covered a ton of reading on procedural model generation, but the scope of the class prohibits
having normal class assignments of such magnitude. We wanted to explore this avenue, then, since we
wouldn't really get the experience otherwise. With the musical backdrop, and the usage of the plant
growth system, we are able to reduce the workload of the project to something which can be managed
within the time allotted. We felt that as a project that touched upon concepts that we didn't get to
reach normally, yet was small enough to achieve with true understanding of the material, it was a
perfect project. That was probably our greatest motivation.

Another aspect of the project is the ability to watch it constructed real-time. Whereas traditional
procedural modelling is done to hasten the process and allow interactivity, the implementation with
music files is designed not only to serve as a backdrop for the drawing, but also to allow the method to
run over the course of an observable time. A four minute song, for example, would show the growth of
the plants over the course of four minutes.

Technique

Audio Capture
The initial conditions for the audio capture, was quick capture of the audio information, quick

transformation to frequency domain, and capture of a microphone or master output of the computer.
This allows the program to be standalone and not be concerned with current programs installed, such as
other similar plug-ins. OpenAL was used to communicate the pulse code modulated data from the sound
card to the program, and a fast Fourier transformation is next used to transform this data from the time
spectrum to the frequency spectrum. After the FFT, an array of data containing amplitude information
of the complete spectrum of frequencies is produced to be used by any function in the program.

OpenAL has several context management functions to access and output data. These functions
provide a way to directly interact with the sound card. In this case the default device name is loaded,
and then the device opened to capture data into a c++ vector. The following code illustrates finding the
default input device and assigning a vector to capture the data.

// set up audio
const ALCchar *defaultInput = alcGetString(0,

ALC_CAPTURE_DEFAULT_DEVICE_SPECIFIER);//find out name of default device
device = alcCaptureOpenDevice(defaultInput, 44100, AL_FORMAT_STEREO16,

samples);//open default device.

 To actually capture the data, the commands alcCaptureStart(device) and alcCaptureStop(device)
are used. When start is called, PCM data is loaded into OpenAL internal ring buffer until stop is called. I
programmed a very simple sleep function that insures enough data is in the buffer. However this may be
improved by rendering the current scene while capturing the next audio samples and getting rid of the
wasted time delay. The way OpenAL loads stereo data is interleaving. The interleaving data is
immediately split up into the left and right channel to be compatible with the frequency spectrum
transformation. The library FFTW was used for the Fast Fourier Transformations. It is one of the fastest
libraries available for Fourier transformations, and was chosen for this property. Using this library, the
following four lines of code produce the frequency spectrum arrays.

pleft = fftw_plan_r2r_1d(samples, inl, outleft, FFTW_DHT, FFTW_ESTIMATE);
pright = fftw_plan_r2r_1d(samples, inr, outright, FFTW_DHT, FFTW_ESTIMATE);
fftw_execute(pleft);
fftw_execute(pright);

The function fftw_plan_r2r_1d(), creates the plan for a real to real one dimensional transformation.
These parameters were chosen, real to real, as well as the discrete Harley transformation which
produces real results, preventing further calculation that would occur with finding the magnitude of

complex numbers. The function fftw_execute() actually performs the plan, and then the data found in
outleft and outright can be used for any scene generation. Repeating this process several times a
second allows for an animation to be produces based on the data coming straight of the sound card.

Alphabet
The Alphabet is a set of symbols used by both the Graphic Display and the Plant Grammar.

However, both use the Alphabet in different methods, and so the meanings of each symbol will be
defined within those sections. The Alphabet consists of the following eight symbols: X, Y, F, E, +, -, [,].

Plant Grammar
In our method, we define the Plant Grammar as the set of rules which regulate the growth of a

plant. In the Plant Grammar, a string in the Alphabet describes the appearance of a plant. This string is
later fed through the Graphic Display in order to create the visual image of the plant. The string is
modified based on a number of production rules, in a similar fashion to an L-System.

However, unlike a traditional L-System, there exist multiple sets of production rules in the Plant
Grammar. Each iteration of growth, the Plant Grammar first obtains the Audio Capture information, and
selects from one of five sets of production rules. These five sets were arbitrarily assigned to five equally
sized fractions of the amplitude scale, with no real method. Then, it reads the string of a plant, and
applies the selected set of production rules. X, Y, and F are variables which are transformed into
substrings by the production rules. The production rules for X and Y are more complex to model entire
plant segments, while F usually is only adding an E or F to simulate a plant segment growing longer. E, +,
-, [, and] are constants, and are skipped over by the Plant Grammar. Once it finishes parsing through the
string, it will send the string to the Graphic Display.

Graphic Display
In order to procedurally model growth, it is necessary to maintain information regarding the

position and orientation of each and every segment, mutable or not, within the plant. We decided to
use an implementation based on Turtle Graphics in order to satisfy this need. At each iteration which
changes the drawing in OpenGL, a 'seed' is planted at the root coordinate of the plant. A direction Vec3f
defines both the direction of growth, and the magnitude, and is initialized as a vertical amount of 10.
The string corresponding to the plant is read, and an action is performed according to the following
table.

X, Y Perform no action. X and Y are variables strictly for the Plant Grammar.
F, E Draw a line from the seed's current position to its position plus the direction vector. Move the

seed to this new position. F and E differ only for the Plant Grammar.
+ Turn the direction vector 25 degrees left, using linear algebra.
- Turn the direction vector 25 degrees right, using linear algebra.
[Pushes the current seed position, colour, and direction into a stack. Randomize a new colour.
] Resets the seed position, colour, and direction to the values at the top of the stack, and pop the

stack.

Stacks in C++ do not support arrays. As a result, three separate stacks of Vec3f are maintained, one each
for seed position, colour, and direction. The usage of stacks simulate the creation of new branches from

the main plant. Returning to the positions on a stack then grows from the previous pattern on the plant.
In order to spice the simulation, we added a colour change algorithm which occurs at the stack step,
designed to colour each branch.

Testing
OpenGL issues were observed on one machine, so all simulation and testing was done on the other
machine, Jarrett's.

The Plant Grammar production rules were tested with pure string manipulation. We used a singular set
of production rules, which would include all 8 possible symbols, and applied it to a single string in
multiple iterations. The results were correct with what should have been produced.

Rather than test the Graphic Display alone, we immediately jumped into testing the communication
between the Audio Capture, the Plant Grammar, and the Graphic Display at once. An extremely simple
set of production rules was assigned to each amplitude benchmark, and colour was not yet
implemented. We fed a short sound segment and observed the production with both a single bucket
and with six. While the results were not exactly plants, we observed that the communication was
working properly and the rules of the Graphic Display were performed mostly accurately.

Further testing was resolved to simple modifications of the production rules, and each time a new
algorithm or concept was proposed (adding colour, refining the stack structure, restarting the plant
growth after a set number of levels, etc). Since the program was functional at this point, testing simply
consisted of running the program and seeing if the output was desirable.

Outstanding Issues
Once we got the communication working and the program itself basically finished, the next step was to
turn it into the beautiful display of plants that we were looking for. On the way, we ran into a number of
outstanding issues, either problems that were resolved or ideas that we decided not to implement. Note
that amidst these issues, we also made some subtle changes to the production rules out of flavour
concern, rather than any actual mechanical issue.

Ridiculously Poor Framerate
The first issue noted was a horrendous frame rate. At the start, with small strings, it was fast to update
the simulation. However, once it hit a few iterations in, the simulation would slow drastically, almost to
a complete halt. This occurs within the span of a couple of seconds, if even that long.

The first "real" set of production rules we wrote were somewhat long, and after only 6 iterations, would
become strings of over 480 characters in length. This grows exponentially, and is a consequence of using
procedural modelling in a fashion similar to an L-System. Those normally generate a product after a
small number of iterations, but our method would take songs of incredible length and produce one
iteration per second. We mitigated this problem by drastically shortening the production rules. The
highest amplitude remained as a long string, in order to preserve the image of complexity. We also
played around with increasing the time between iterations, and also only advancing one plant at a time
rather than all six simultaneously.

The framerate remains "questionable", in that it may slow in perceiveable amounts near the end of each
cycle. However, we found that this slowdown is negligible in the long term and left it in.

Left-sided Trees
Once we were finally able to properly observe the plants, we noticed that no matter how many right
turns were suggested in the strings, the plants would always lean primarily to the left. This turned out to
be because the direction of the plant was not pushed onto a stack. This was when we implemented the
third stack. Upon doing so, our trees were properly upright.

Bland Symmetric Trees
Another problem we were having was all the trees were quite uniform. After debugging some of the
code, it was realized that the rule selection currently was not very well distributed, especially in the
plants that corresponded to high frequencies. For the most part only the first or last rule was being
called during tree growth. This was due to fact that the intensities of the high frequencies were
generally much lower than the values calculated for the low frequencies. This comes from the property
that within the audio spectrum high frequency sounds are clearer at the same output power for human
perception. The amplitudes of the higher frequencies were less than that of the low frequencies but
perceived about the same. After adding several constants to apply a gain to the high frequency
amplitudes, more rules started to be called. These were tweaked to find a good range where the
amplitudes were distributing to all rules, and instantly the trees became much more interesting and
intricate.

Tree Refreshing
Despite having this new reduced grammar, after 6 iterations, the refresh rate was pitifully slow, almost
one second for the next level to be drawn. At this point it was obvious that waiting for this exponentially
growing function was not going to work. Clearing the trees every once in a while solved this problem,
but still a balanced needed to be found between detail and time. Creating the plants down to 5 levels
and refreshing them, gave enough time for unique plants to be generated, output, and observed before
moving onto the next completely new plant. This also was more in line with the visualizer idea, because
it could be set to run and would just act only what was playing currently, constantly updating and
adapting to new content like most visualizers.

Spinning Trees
Once we finally had some interesting growths, we observed that sometimes trees would rotate.
Sometimes they would go as far as to grow downwards, completely off the perspective of the camera.
We discovered that the source of this issue was that the starting string, which was simply X, allowed the
plant to begin with turning commands. And with each subsequent iteration, the plant would rotate
further. By changing the initial string to E[X], it always grew upwards.

The Angle Question
The turning command in the Graphic Display is fixed at 25 degrees. This is performed with pre-defined
sine and cosine floats that are multiplied into the direction vector. The implementation was designed to
save computation time rather than waste time calculating the trigonometry. A function, setAngle(theta)

was written with the intent that additional angles could be predefined, and the sine and cosine
constants updated.

We originally implemented a randomized angle system that was somewhat influenced by the audio
capture. It would select a different angle at each turn. When we tested it, however, the results were
beyond chaotic. The reason for this was the same as the directional bias of earlier; the angles were not
memorized so the plants would twitch with new angles at every single juncture. Saving the angle at
every juncture would be much more complicated, in addition to requiring an additional stack. We
agreed to abandon the implementation of different angles and remained with the 25 degree angle.

The Multithread Question
Since 6 trees were being computed simultaneously on the same audio data, it was originally thought
that multithreading these computations and the drawing would provide an instant speed up. A
significant amount of the time is spent in drawing loop. However after much research, it was discovered
that OpenGL and multithreading are very difficult to work together. Due to the way the Windows
implementation of OpenGL works, each active OpenGL window has a context that can be drawn into.
This context is locked to be accessible by only one thread at any one time. In order to multithread the
drawing, the context of the open window would need to be switched constantly to different threads and
restored, which is a very slow operation. In addition, because the context is locked, the draw operations
would need to be performed sequentially although in an interleaving format anyway. This is basically the
same as sequentially drawing the plants, only with context switching in between, providing no real
advantage to multithreading. The decision to use the current non-threaded design was then made with
slight improvements to the draw loops.

Finalized Settings
All of the issues and implementations resulted in the following settings.

• 6 buckets listen to 6 separate frequencies, receiving an amplitude value that is a refined into a
new value for rule selection.

• 5 different sets of production rules, from low amplitude to high amplitude.

Conclusion
This project was completely successful in linking music to something new like procedural generation of
plants. This technique provides a new twist on procedural modeling, using a new type of input data to
generate representative plants. This type of data input could be used for generating other types of
procedural modeling, especially useful if the models are to be stored due to the time taken to draw the
models. Very realistic looking plants were generated and the selection of rules only enhanced their
appearance. The only concern that remains in a real-time situation like this is frame-rate but considering
the aesthetic quality of the plants, the achieved rates are perfectly acceptable for the application.

Future Potential
While for our purposes, the program is completed, there are a lot of additional possibilities which can be
added onto the program. Some of these, such as randomized angles, were considered and simply
abandoned. Here are some of the other ideas that can be expanded upon.

Singular Plant Display
As mentioned, we changed our original intent from modelling a single, large plant path to refreshing the
plant after it reaches a certain level of growth. However, the code is still perfectly capable of ignoring
this refresh step, and simply producing complex plants. Implementing this would change the program
from an interactive-time visualization to a single-time model.

Three Dimensional Plants
The alphabet currently only operates in a 2D plane. By adding new symbols, new rules for the Graphic
Display can dictate a third dimension, allowing a full three dimensional plant. From this step, additional
function such as shadows and lighting can easily be added as if the plant model was any standard model.

Work Assignment
JARRETT

• Refining the Audio Capture program

• Running the simulations on a better machine

• Refining rule selection create more interesting plants.

CHRIS

• Writing the Plant Grammar

• Writing the Graphic Display

BOTH

• Incorporating all of the elements into a single program

• Refining the production rules of the Plant Grammar

References
[1] Prusinkiewicz P., Hammel M., Mjolsness E. "Animation of Plant Development" August, 1993.
Computer Graphics (Proceeding of SIGGRAPH 93)

[2] Prusinkiewicz P., Hammel M., Mĕch R. "The Artifical Life of Plants" August, 1995. Artificial life for
graphics, animation, and virtual reality (Volume 7 of SIGGRAPH 95)

 [3] Smith A. "Plants, Fractals, And Formal Languages" July, 1984. Computer Graphics (Proceeding of
SIGGRAPH 84)

	Introduction
	Related Work
	Motivation
	Technique
	Audio Capture
	Alphabet
	Plant Grammar
	Graphic Display

	Testing
	Outstanding Issues
	Ridiculously Poor Framerate
	Left-sided Trees
	Bland Symmetric Trees
	Tree Refreshing
	Spinning Trees
	The Angle Question
	The Multithread Question

	Finalized Settings
	Conclusion
	Future Potential
	Singular Plant Display
	Three Dimensional Plants

	Work Assignment
	References

