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0. Abstract
This paper outlines the general use of the GPU interface defined in shader languages, 
for the design of large-scale effects with per-pixel clarity. At this point, the stability of 
GPU programming has matured, and effects can be used reliably on most consumer 
hardware. Coupled with the low efficiency reduction and short code segments, the 
incorporation of shader effects seems to have a high benefit/cost ratio.

Algorithms of persistent animated effects are also detailed. These outline the general 
process used in the development of pixel shaders, and describe concepts such as 
render to texture, the framebuffer, and distortion effects.

1. Introduction
Programmable  GPUs  were  introduced  commercially  six  years  ago,  in  high-end 
graphics  cards.  Initially,  there  were  many  standards  and  upgrades  that  offered 
important innovations, such as stencil and depth buffers, but reduced the general 
portability and reliability of shader code.

Recently, the incorporation of programmable GPUs into modern gaming consoles has 
established standard guaranteed results, and opened up the possibilities for realtime 
pixel level manipulations in commercial software. These effects are visually stunning, 
and generally run at relatively low overhead on the CPU.

In this paper, I explore the early use of the programmable GPU in the computer 
market,  and  examine  some  fundamental  concepts  for  taking  advantage  of  the 
hardware interface. I will  discuss the use of textures as general  data structures, 
which offer persistent information over multiple frames, and the use of the rendering 
pipeline  as  a  general  pixel  processor.  An  analysis  will  cover  the  benefits  and 
disadvantages  of  the  current  widely  supported  shader  languages,  and  future 
extensions to GPU programming, such as CUDA.

I will conclude with a few algorithms implementing the previously explained methods 
of persistent animation. The first is a rippling effect that follows a position on screen 
and stacks the displacement of previous frames. The second is a radial light that 
changes hue, intensity, and saturation by a moving point on screen, and smoothly 
interpolates its animation.

2. General Shader Overview
Shaders are compiled programs executed on GPU, rather than the CPU. They are 
fairly low-level instruction sets that mimic assembly language and C. As their original 
intention was to offer visual computation, much of the syntax is oriented around 
geometry, textures, and colors.

Because  the  GPU  is  typically  composed  of  many  simple  processors  running  in 
tandem,  shaders  are  limited  to  a  relatively  small  number  of  instructions,  and 
generally perform transformations on one discrete unit of the scene.



Modern graphics hardware offers two distinct types of shaders, which are handled at 
different  stages  of  the  rendering  pipeline.  Vertex  (or  Geometry)  shaders  are 
designed to transform individual geometry in a scene, and are handled early in the 
rendering pipeline. Pixel (or Fragment) shaders are designed to transform the buffer 
information of individual screen coordinates, and are handled late in the pipeline, 
when the scene has been rasterized from geometry to pixel color values.

Pixel shaders operate on the individual pixels of a render pass, and are not given 
access to their neighbors due to the massively parallel processing. However, they are 
provided with common texture information, which typically represents a set of pixel 
color values. By using the framebuffer contents for the last frame as texture data for 
the current frame, simple persistent effects can be achieved.

For effects requiring more information than the color values of the previous frame, 
textures can be used beyond their general application. Since each pixel, or execution 
of the pixel shader program, is given 24 or 32 bits of information storage per screen-
sized texture, this space can be used to represent arbitrary data accumulated over 
previous frames. This allows persistent distortion and other effects beyond the realm 
of basic color interpolating.

The use of textures as indeterminate data structures allows pixel shaders to perform 
general computation at each pixel, based on certain common parameters. This is the 
fundamental  method  for  designing  persistent  full-resolution  effects  in  a  visual 
application.

3. The General Process
When rendering pixel effects on the GPU, the traditional rendering pipeline does not 
offer much towards their processing. Typically, the effect will be handled entirely in 
the pixel shader, and the other steps of the pipeline are sent simple tasks, purely to 
access the power of the pixel shaders.

For a simple fragment-independent effect, a pixel shader is a single additional step in 
the  process.  Shaders  occur  immediately  after  rasterization  and  texturing,  which 
means that the current framebuffer contains the rendered display. Using these color 
values, simple effects like desaturation can be applied to the scene.

Figure 1: A simple desaturation pixel 
shader effect, applied to a quad in the 
center of the scene.



For a slightly more complicated distortion effect,  two additional steps are added. 
First, the framebuffer of the rendered scene is copied to a texture. Then, a single 
screen-sized quad is  passed to  the rendering pipeline  with  a  pixel  shader  effect 
attached, so that each pixel runs the shader program. This is not ideal, as time is 
spent  on  the  fake  geometry  in  lighting,  transformations  to  screen  space,  and 
rasterization, for no reason but to set up the pixel shading stage properly. However, 
this is the only interface supplied to pixel shaders.

This is the simplest form of multipass rendering, where the rendering pipeline is run 
more  than  once  each  frame.  For  techniques  like  distortion,  where  the  entire 
framebuffer must be accessible from each pixel, it is necessary overhead.

For even more complicated effects, an additional pass can be added at the beginning 
of the process to render data, rather than a color buffer. The data can then be copied 
to a texture and used to generate the framebuffer, or to define distortion and other 
effect parameters on a per-pixel basis.

4. Future Extensions
The current  use of  the GPU to  handle  general  programming is  restricted by the 
overall  design towards graphics processing. There are no general data structures, 
and  most  persistent  information  must  be  broken  up  to  fit  in  a  set  of  textures. 
Additionally, each pass of rendering can only produce a framebuffer-sized amount of 
new information, as this is the only write-access structure.

While these limitations and the overall obfuscation of the interface reduce the extent 
to  which  the  GPU  can  be  easily  programmed,  recently  general-purpose  GPU 
programming languages have become available. CUDA, which is supported by newer 
high-end Nvidia cards, is a large improvement on non-graphics oriented processing.

CUDA provides an interface to main memory that does not involve textures. This 
allows each thread to allocate an arbitrary amount of memory, not bound to the sizes 
of any graphics structures. It also resolves the issue of storing new information, by 
allowing threads to write back to all of main memory.

CUDA  still  enforces  certain  limitations  in  its  design,  and  introduces  it  own  new 
limitations. First, threads are still prevented from running recursive calls. Second, 
the more general nature of CUDA programming reduces the optimization procedures 
of  the  graphics  hardware,  and  introduces  slowdown  in  more  graphics-oriented 
functionality.  Third,  performance  penalties  result  if  threads  are  not  handled in  a 
convoluted way, where programs should be split into thousands of processes, and 
blocks of these threads must branch in a similar way. These limitations seem to arise 
from the general structure of graphics hardware devices, which are designed for a 
very specific operational flow.

5. Sample Algorithms

5.1 Persistent Ripple Distortion
A rippling effect is a distortion effect, which modifies the contents of the screen by 
selecting pixels in the framebuffer texture nearby the current position, through a 
mathematical algorithm. A simple example would be to calculate the distance from 



the current point to the center point of the ripple effect, add the current time, and 
take the cosine. Code Segment 1 describes this method.

(1)
First Pass:

//no shader, just render the scene normally
copyframebuffer(tex);

Second Pass:
length = sqrt((posX-cposX)2 + (posY-cposY)2);
dir = (pos-cpos)/length;
return tex[pos + dir*cos((pos-cpos) + time)];

Where the returned value is the color at position pos in the final scene, cpos is the 
center position of the ripple, dir is the normalized vector direction from cpos to pos, 
and tex is the framebuffer texture created in the first pass. By adding or subtracting 
time, the effect can ripple outward or inward.

However, this simple effect does not have a concept of earlier frames, and only bases 
the effect on the current center position. The perceived persistent effect is achieved 
by incorporating time in a periodic function, which changes the distortion at each 
pixel only slightly each frame.

To extend this algorithm, it is necessary to maintain information at each pixel about 
the  previous  frame.  To  prevent  the  scene  from  becoming  distorted  beyond 
recognition, this data must degrade as time passes,  and eventually return to  its 
default value.

Figure 2: A simple ripple effect, which does not take the distortion of previous 
frames into account. It is applied only to the quad in the center of the scene, and 
would not have a defined edge if the quad was the size of the full scene.



Two additions are made to the previous algorithm, which add an additional pass in 
rendering.  The  first  is  to  produce  a  screen  size  texture  which  contains  offset 
information, indicating how much the pixel was distorted in the past. By encoding 
this as two floats in x and y, a 32 bit texture buffer can contain the information.

The second addition is to set a radius on the rippling effect, via a linear interpolation 
function. By maintaining a maximum radius property, the influence of the cosine 
distortion will decrease as the position is further away from the center point of the 
effect. Code Segment 2 shows the updated algorithm, reflecting both these changes.

(2)
First Pass:

length = sqrt((posX-cposX)2 + (posY-cposY)2);
amt = max(0,radius-length)/radius;
dir = (pos-cpos)/length;
distortion = amt*dir*cos((pos- cpos) + time);
return distortion + max((0,0),datatex[pos] – deltaTime);
//this creates a buffer of data, with 2x 16 bit floats for (x,y) distortion

copyframebuffer(datatex);

Second Pass:
//no shader, just render scene normally

copyframebuffer(tex);

Third Pass:
newpos = datatex[pos];
return tex[pos + newpos];

5.2 An Animated Radial Light
This is a pixel independent effect, where all animation is determined completely by 
common parameters and the previous framebuffer value at the same location. The 
effect  is  defined in HSL color  space,  and then converted to  RGB color  space for 
display. This technique requires only one pass, as it moves the previous framebuffer 
contents into a texture before rendering, and applies the shader effect on the scene 
directly.

The basic idea is to generate a light from a point on the screen, where the color and 
saturation are respectively based on the angle from that point to the current pixel, 
and  the  speed  at  which  the  screen  point  moved  in  the  last  frame.  Therefore, 
parameters  are  cpos,  the position on the screen,  opos,  the old position on the 
screen last frame, and deltaTime, the change in time since the last frame.

(3)
copyframebuffer(tex);
First Pass:

oldhsl = rgb2hsl(tex[pos]);
angle = abs(atan2(pos))/(2*pi); //0.0-1.0 range for angle
speed = sqrt((cposX-oposX)2+(cposY-oposY)2);
radius = max(0.0,min(n,speed/constprop); 
hsl = hsl(angle,speed,0.5); //half brightness gives fully saturated colors
hsl.hs = max(0.0,min(1.0,(hsl.hs + oldhsl.hs)/2));



hsl.l = max(0.0,min(1.0,(hsl.l + oldhsl.l – deltaTime)/2));

Code Snippet 3 outlines this effect, where hsl components are described with access 
similar  to  rgb  colors,  changed  to  hsl  for  clarity.  This  effect  is  less  intensive  to 
compute, and still produces interesting visual results.

6. Analysis and Results
My initial effort in the implementation of the algorithms was unproductive, due to the 
use of the 3dLabs GLSL demo. When my research began, I was not fully aware of the 
differences between framebuffer access and full render to texture functionality. As 
the GLSL demo supports  the former and not  the latter,  only  simple distortion is 
supported,  and persistent  effects  cannot be maintained.  Coupled with the recent 
collapse  of  3dLabs,  which  eliminated  all  documentation  of  the  program,  the 
development of the described sample effects proved impossible.

I am currently working on another version of the shaders, written in HLSL and XNA. 
This development environment completely supports render to texture functionality, 
and  therefore  allows  the  use  of  textures  as  general  data  structures.  With  this 
functionality,  implementing  the  aforementioned  algorithms  should  be  trivial. 
Hopefully, the screenshots and analysis will be added soon, in an addendum to this 
paper.

7. Conclusions
The  GPU is  capable  of  handling  advanced visual  effects  in  realtime  applications, 
despite strict limitations in current hardware interfaces. The shader languages have 
matured into stable, reliable processes, which produce expected results on a variety 
of  hardware  products.  Despite  the  interface  complexity,  the  GPU  offers  efficient 
solutions to problems that are not easily handled in a serial design. 

Unfortunately, it seems future improvements to the programmable GPU interface will 
always remain convoluted, because the graphics hardware is primarily designed to 
improve graphics processing tasks. The internal structure of the hardware is wired to 
offer communication between graphical components, and the parallel processors are 
simply a secondary method of improving the performance of these tasks.

However, because graphical processing is a very complicated problem, a significant 
amount  of  power  has  been  put  into  these  devices.  In  addition,  the  general 
requirement  for  graphics  in  computers  has  made  this  hardware  cheap  and 
commonplace. Because of this, GPU programming will continue to improve overall 
performance of  tasks,  as  it  is  widely  supported and capable  of  quickly  resolving 
complex problems.
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6. Analysis and Results 
After porting the shader code from GLSL and the 3D Labs demo to HLSL and XNA, 
the results were very positive. However, the original plan for the radial light 
exceeded the maximum math instruction count on Shader Model 2 (64), reducing 
general portability. I was able to reduce the process by blending previous frames 
purely in RGB color space, rather than HSL. 
 

 
Figure 1: The radial light effect. When the center point is moved quickly, the 

intensity of the light increases, and previous frames appear as trails.  
 
 
In the process of developing the persistent ripple effect, a bug introduced a new 
concept, of distorting the distortion buffer itself before applying it to the scene. This 
allowed for more consistent water trails, and removed some of the artifacts of my 
initially described method. However, both effects seem to work best in certain 
situations. The older effect feels more solid, and works better on photo-like images, 
while the newer ripple effect works best in drawn or high-contrast scenes. 
 
The produced effects did not reduce the frame rate noticeably. As most of the 
calculations were handled on the GPU, the CPU was able to dedicate its time to other 
tasks. The effects tested the limits of current hardware, as the radial light effect used 
nearly all the math instruction slots, and the most complex ripple effect used four 
passes. Because of the efficiency found in using these effects, it seems reasonable to 
conclude that modern hardware is capable of handling persistent realtime effects. 



 
Figure 2: The ripple effect described in the original document, on two different 

backgrounds to show the distortion in scenes with different contrast levels. 
 
 

 
Figure 3: The newer ripple effect. The upper images show the visual representation 

of the initial distortion buffer (left), and the new distortion buffer (right). 
The trails in the old distortion buffer simply faded out, which would move 
the distortion back to zero in a fixed amount of time. In the new distortion 

buffer, trails blend and ripple more like water. Using the new distortion 
buffer, the bottom image (left) was distorted as shown (right). 

 
 
 


