
Volume Lightning Rendering and
Generation Using L-Systems

Chris LaPointe Devin Stiert

Advanced Computer Graphics 2009

Rensselaer Polytechnic Institute

Figure 1: Rendering of volume lightning

Abstract
Our paper takes advantage of a volumetric data structures
and L-Systems to dynamically and randomly generate
bolts of lightning. After volume generation has been
completed, a ray tracer is used to step through the voxels
within the volume to render the texture in an environment
with appropriate lighting that affects the scene.

Keywords: lightning, volumes, ray tracing, L-Systems

1 Introduction and Motivation
Lightning is something that is not significantly studied
within the graphics field of computer science. Recreation
of natural phenomenon has always seems to catch the
interest of researchers in the field, so why not lightning?
We provide a realistic method to generate and render
lightning within a scene.

Our method of generates three dimensional lightning using
a L-System to generate the fractal looking pattern
randomly, following a given path, and then using a ray
tracer to render the result. In order to hold on to detail
from one step to the next, the result of the L-System is
stored within a volume texture. Even though a volume
texture can be quite large, it has its benefits, which will be
discussed later in the paper.

In addition, a lighting technique is provided in the paper to
demonstrate how a volume can affect the diffuse (and
potentially specular) surfaces within a scene.

2 Background Readings
Niemeyer et al. [4] developed the dielectric breakdown
model, or DBM. This model can describe a number of
different natural phenomena including lightning. It uses
the Laplace equation to assign probability of the path of
the modeled phenomena to pass through each position on
a grid.

Theodore and Ming modify this model for the specific use
of generating lighting[2]. They later improve on their
technique using an improved rendering method[3]. While
physically accurate, their technique looses realism in
rendering due to its obvious artifacts and flat appearance.

3 Rendering and Generation
For our software, rendering is processed in two completely

separate steps (and completely different programs for that
matter). This acts as an ease in the implementation, a
render-time saving strategy, and a scalability model to the
application. The first program(3.1) renders a lightning
“fractal” using a simple L-System technique. The second
program(3.2) takes the volume generated by 3.1 and
renders it as a volume with appropriate lighting
techniques.

3.1 Generation Algorithm

Several algorithms were attempted to generate realistic
looking lightning. On the third attempt an L-system
technique was used, similar to that described in [1]. This
technique is settled on for its ease of implementation,
speed of calculation, and realistic results.

The method described in [1] is meant for a two
dimensional game-like scenario where lightning needs to
be generated on the fly. Our algorithm took ideas from
their algorithm and expanded it to the third dimension, as
well as improving upon its results, since speed was not a
main concern.

The first step our algorithm is to take a line segment, S,
that starts at the source of the bolt, and has a destination of
the end of the bolt, either as specified by the user or
automatically generated. Then, using rules provided by
the L-System, the line segment is subdivided at the
midpoint and displaced at an angle perpendicular to itself,
M, which has a random magnitude, to form S' (Figure 2).
The algorithm then repeats for both line segments in S'
until the number of levels of detail, n, is reached. On each
iteration, the maximum random magnitude that M can be
is halved. The result will ultimately be very similar to
Perlin noise (Figure 3).

This method works well for the main shaft of the lightning

Figure 2: L-System applied to a segment

strike, but does not provide the splits and bolts that are
commonly seen coming off large charges of electricity. In
order to provide this, there is a probability PB' which
determines whether or not a segment will have the
additional B' offspring (Figure 4). A good value for value
for PB turned out to be around 0.5. Once a bolt B has been
created, it is treated just like any other line segment in the
algorithm, and has its own probability to subdivide and be
offset. In addition, the intensity I, of B is half that of S'.
The intensity will be discussed later, and primarily affects
the color and alpha of the rendering.

The series of line segments generated from the L-System
is simply drawn directly to a volume buffer with size
WxHxD. Once the volume buffer has all the segments
from the L-System, further operations can be applied to it.

Once the line segments are fully created to a sufficient
visually appealing level, we add color and glow to them.
In general, the main beam of the light has the color
C=(0.5,0.5,1.0,1.0) in RGBA, and the branch has the
color C*I. This puts the branches slightly in the
background compared to the main bolt.

After applying color, we run a blur on a separate copy of
the image using a Canny-Deriche filter. Then the image is
brightened several ordered of intensity until it is visible.
This “glow” image, G, is then simply just added to the bolt
image. This provides a nice “glow” or “halo” effect
around the lightning and brings out highlights in large
clusters of electricity.

The last step is for efficient and space requirements only.
The image is then flipped for compatibility with the
volume ray tracer, and also cropped so that only

brightened pixels are saved in the image file, both saving
memory and reducing render time.

3.2 Rendering Volumes

The volume tracer is an extension to a basic ray tracer.
After loading the volume file, the ray tracer first generates
an approximation of the light sources in the volume.
Ideally each voxel in the volume would be treated as a
light source, but this would cause a massive slowdown in
rendering for a very small increase in accuracy. To
approximate the lights the volume is scaled down to a
more manageable size and the colors are linearly
interpolated. We found that around a 643 light cube map
was the largest our systems could handle due to memory
constraints but gave us acceptably realistic lighting. The
tracer scans through the scaled down volume and adds any
points with a brightness above a specified threshold into
the scene (Figure 5). By only adding the brighter lights to
the scene we save a substantial amount time that would be
spent tracing to lights with little to no contribution to the
final color.

During the tracing stages the volume is treated as a AABB
(Axis Aligned Bounding Box). We choose to implement a
very simple AABB-ray intersection algorithm. Faster,
more complicated algorithms exist, but we felt the speed
increase would be insignificant compared to the amount of
time spent tracing through the volume and the amount of
time it would take to implement. In addition to keeping
track of the t value, or distance from ray origin to an
intersection with an object, the distance to the exit of the
object is stored as well, called tfar. To determine the color
of a pixel whose ray intersects with the AABB the ray

Figure 4: Branch, B, splitting off after a segment has
been split.Figure 3: Line Segment after L-System

Computation

tracer starts at the point marked by t, and steps through the
volume by a delta (usually .25 units) of a unit at a time
until it reaches tfar. At each step the values of the closest
points are interpolated and summed as the tracer
progresses.

We choose an additive color model, using the equation
diffuse += light_color*Δ where the delta is used to step
the strength of a light. We chose this method because our
volumes are purely emissive with each particle only
emitting light and having no diffuse or specular
components. After the volume is traced through, a
secondary ray is shot out of the back of the AABB and the
resulting color is added in. This accounts for the
transparency of the volume.

4 Results
To render the volume image with the size of 2563 with one
lightning bolt (one original segment, eight levels of detail),
on a 2.6 GHz Pentium IV machine took 40.4 seconds.
Simply increasing the number of bolts does not double the
time, simply taking 40.9 seconds when two bolts were
computed. The solution is very scalable when any number
of lightning bolts. The primary time consumption, over
60%, comes from the Canny-Deriche blur filter to
calculate the glow map.

Memory is often a major issue with this implementation.
If the image has the size of WxHxD with RGBA, then the
size of memory must be 8*W*H*D. The memory
overhead comes from the fact the image is RGBA, and the
glow filter needs to store a second copy of the image.

Ray tracing a volume takes significantly more time. The
scene seen in (Figure 1) takes 523 seconds to render on a
Core 2 Duo 2 GHz system with 2 GB of RAM. The
majority of memory used by the program is taken up by
storing the volume texture within memory, which is
4*W*H*D.

5 Future Work
This solution comes out with decent results, however, is
not perfect. Some of its main issues lie in its memory
consumption and render time. Reduction of these
resources would be possible with more time and research
into the project.

5.1 Difficulties in Generation

As mentioned in 3.1, the L-System technique to generate
bolt “fractals” was used only after trying two other
techniques. The first technique that was attempted was the
physically based method as described in [2] and [3].
Time, knowledge of physics, and resources went into our
inability to implement this method. As realistic as the
equations were, the method in the paper did have its flaws.
Their implementation limited the result to a two
dimensional image, and often had artifacts where the
image was placed in the rendering. This method was
abandoned after realizing its mathematical and
implementation complexity.

The next attempt was a common method using Perlin
noise differences and gamma correction. The idea was to
make two passes at Perlin noise, subtract the differences,
invert the image, and apply a high value gamma filter to it.
This produced electricity-like results, but had the problem
that it could not isolate a single bolt. In addition, when the
algorithm was extended to encompass the third dimension,
it no longer looked like any electrical field, but rather, it
appeared to be caverns. After applying more filters and
trying to isolate a certain region to turn into a single bolt
within the 3D field, the method was again abandoned for
its inability to produce convincing results.

The method we chose to go with using L-Systems was
relatively straight forward to implement in two
dimensions, and was not hard to extend to three. One of
the main difficulties was picking probabilities and
intensity ratios to provide a believable result. Regardless,
this method had overall better performance and results
than the previously attempted methods.

Figure 5: Calculating light from an object looking
at simplified voxels in the lightning

5.2 Difficulties in Volumes

We ran into several difficulties in creating the volume
tracer. First we saw strange noise in circular groupings
(Figure 6). We determined this to be caused by too large
of a Δ step while tracing through the volume. If the Δ was
too large it would skip over multiple voxels while tracing
through at large angles. Reducing the step to much smaller
than the resolution of the grid fixed this.

There were also some issues determining what type of
color mixing to use. We experimented with both additive
and multiplicative colors. We decided on an additive
technique because we felt that would best simulate the real
behavior of a lightning bolt. To be extended to render non-
emissive volumes other coloring techniques would need to
be implemented.

The tracer also does not deal with the case of other objects
intersecting the volume. Currently in this case the objects
intersecting the volume are 'clipped' by the AABB
containing the volume. Similarly any objects with a
surface flush to one of the faces of the AABB will suffer
from a noisy incorrect appearance due to floating point
errors. We simply offset other objects off of the AABB
slightly.

5.3 Improvements

There are many possible improvements to the method this
paper describes. Memory is one of the biggest issues. A
5123 image takes 8 GB of memory just to generate! One
of the major improvements that could be made to the bolt
generator is to simply take less memory by intelligently

choosing a volume size, or completely abandoning the
volumetric method of storing lightning all together. This
would also increase the running time of the program
because the Canny-Deriche filter only needs to go through
a fraction of the pixels to generate the glow map.

Speed increases for the generator could also be found by
switching to a more native library rather than relying on
CImg library's image abstraction classes, which are
heavily functional, but bloated [6].

6 Conclusion
Our method renders realistic lightning successfully within
another scene. Lighting affects are provided, and can
relatively quickly (compared to rendering) generate new
lightning bolts and save them to a volume texture.

The application could be improved in several ways to both
speed up production using better data structures, and to
reduce memory consumption by storing lightning data in
something other than a volume texture.

References
[1] DRILIAN'S HOUSE OF GAMES. Webpage -
<http://drilian.com/2009/02/25/lightning-bolts/>

[2] KIM THEODORE, LIN MING C. 2004. Physically
Based Animation and Rendering of Lightning. University
of North Carolina at Chapel Hill.

[3] KIM THEODORE AND LIN MING C. 2007. Fast
Animation of Lightning Using an Adaptive Mesh.
University of North Carolina.

[4] NIEMEYER L., PIETRONERO, AND WIESMANN
H. J. 1983. Fractal Dimension of Dialectric Breakdown.
Brown Boveri Research Center.

[5] PERLIN KEN. 1985. An Image Synthesizer. ACM
SIGGRAPH Computer Graphics.

[6] TSCHUMPERLE DAVID. 2004. The Cimg Library.
Webpage - <http://cimg.sourceforge.net>

Figure 6: Rendering of a Perlin-generated volume
showing artifacts with a low delta

Figure 7: Initial test of 2D L-System generator

Figure 10: The L-System has the ability to follow
a path (This image is simply a preview, and not a
rendering).

Figure 8: Multiple beams of lightning in a single
volume.

Figure 9: Lightning color can easily be changed to
represent a variety of effects

Figure 12: Volume rendering of a grid Figure 11: Rendering of a volume lightning strike
in a simple scene (Lightning is upside down in this
image)

Figure 13: Rendering of scene with three different color lightning bolts

	Abstract
	1 Introduction and Motivation
	2 Background Readings
	3 Rendering and Generation
	3.1 Generation Algorithm
	3.2 Rendering Volumes

	4 Results
	5 Future Work
	5.1 Difficulties in Generation
	5.2 Difficulties in Volumes
	5.3 Improvements

	6 Conclusion
	References

