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Figure 1: Rendering of volume lightning



Abstract
Our paper takes advantage of a volumetric data structures 
and  L-Systems  to  dynamically  and  randomly  generate 
bolts  of  lightning.   After  volume  generation  has  been 
completed, a ray tracer is used to step through the voxels 
within the volume to render the texture in an environment 
with appropriate lighting that affects the scene.
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1   Introduction and Motivation
Lightning  is  something  that  is  not  significantly  studied 
within the graphics field of computer science.  Recreation 
of  natural  phenomenon  has  always  seems  to  catch  the 
interest of researchers in the field, so why not lightning? 
We  provide  a  realistic  method  to  generate  and  render 
lightning within a scene.

Our method of generates three dimensional lightning using 
a  L-System  to  generate  the  fractal  looking  pattern 
randomly,  following a  given path,  and then using a ray 
tracer to render the result.  In order to hold on to detail 
from one step to the next,  the result  of the L-System is 
stored within a volume texture.   Even though a volume 
texture can be quite large, it has its benefits, which will be 
discussed later in the paper.

In addition, a lighting technique is provided in the paper to 
demonstrate  how a  volume  can  affect  the  diffuse  (and 
potentially specular) surfaces within a scene.

2   Background Readings
Niemeyer  et  al.  [4]  developed the  dielectric  breakdown 
model,  or  DBM. This  model  can describe  a  number  of 
different  natural  phenomena  including  lightning.  It  uses 
the Laplace equation to assign probability of the path of 
the modeled phenomena to pass through each position on 
a grid.

Theodore and Ming modify this model for the specific use 
of  generating  lighting[2].  They  later  improve  on  their 
technique using an improved rendering method[3]. While 
physically  accurate,  their  technique  looses  realism  in 
rendering due to its obvious artifacts and flat appearance. 

3   Rendering and Generation
For our software, rendering is processed in two completely 

separate steps (and completely different programs for that 
matter).   This  acts  as  an  ease  in  the  implementation,  a 
render-time saving strategy, and a scalability model to the 
application.   The  first  program(3.1)  renders  a  lightning 
“fractal” using a simple L-System technique.  The second 
program(3.2)  takes  the  volume  generated  by  3.1  and 
renders  it  as  a  volume  with  appropriate  lighting 
techniques.

3.1   Generation Algorithm

Several  algorithms  were  attempted  to  generate  realistic 
looking  lightning.   On  the  third  attempt  an  L-system 
technique was used, similar to that described in [1].  This 
technique  is  settled  on  for  its  ease  of  implementation, 
speed of calculation, and realistic results.

The  method  described  in  [1]  is  meant  for  a  two 
dimensional game-like scenario where lightning needs to 
be generated on the fly.  Our algorithm took ideas from 
their algorithm and expanded it to the third dimension, as 
well as improving upon its results, since speed was not a 
main concern.

The first step our algorithm is to take a line segment,  S, 
that starts at the source of the bolt, and has a destination of 
the  end  of  the  bolt,  either  as  specified  by  the  user  or 
automatically generated.   Then,  using rules provided by 
the  L-System,  the  line  segment  is  subdivided  at  the 
midpoint and displaced at an angle perpendicular to itself, 
M, which has a random magnitude, to form S' (Figure 2). 
The algorithm then repeats for  both line segments in  S'  
until the number of levels of detail, n, is reached.  On each 
iteration, the maximum random magnitude that  M can be 
is  halved.   The result  will  ultimately be very similar  to 
Perlin noise (Figure 3).

This method works well for the main shaft of the lightning 

Figure 2: L-System applied to a segment



strike,  but  does not provide the splits  and bolts that  are 
commonly seen coming off large charges of electricity.  In 
order  to  provide  this,  there  is  a  probability  PB' which 
determines  whether  or  not  a  segment  will  have  the 
additional B' offspring (Figure 4).  A good value for value 
for PB turned out to be around 0.5. Once a bolt B has been 
created, it is treated just like any other line segment in the 
algorithm, and has its own probability to subdivide and be 
offset.  In addition, the intensity I, of  B is half that of  S'. 
The intensity will be discussed later, and primarily affects 
the color and alpha of the rendering.

The series of line segments generated from the L-System 
is  simply  drawn  directly  to  a  volume  buffer  with  size 
WxHxD.  Once the volume buffer  has all  the segments 
from the L-System, further operations can be applied to it.

Once the  line  segments  are  fully created to  a sufficient 
visually appealing level, we add color and glow to them. 
In  general,  the  main  beam  of  the  light  has  the  color 
C=(0.5,0.5,1.0,1.0)  in  RGBA,  and  the  branch  has   the 
color  C*I.   This  puts  the  branches  slightly  in  the 
background compared to the main bolt.

After applying color, we run a blur on a separate copy of 
the image using a Canny-Deriche filter.  Then the image is 
brightened several ordered of intensity until it is visible. 
This “glow” image, G, is then simply just added to the bolt 
image.   This  provides  a  nice  “glow”  or  “halo”  effect 
around  the  lightning  and  brings  out  highlights  in  large 
clusters of electricity.

The last step is for efficient and space requirements only. 
The  image  is  then  flipped  for  compatibility  with  the 
volume  ray  tracer,  and  also  cropped  so  that  only 

brightened pixels are saved in the image file, both saving 
memory and reducing render time.

3.2   Rendering Volumes

The volume tracer is  an extension to a basic ray tracer. 
After loading the volume file, the ray tracer first generates 
an  approximation  of  the  light  sources  in  the  volume. 
Ideally each voxel  in the volume would be treated as a 
light source, but this would cause a massive slowdown in 
rendering  for  a  very  small  increase  in  accuracy.  To 
approximate  the  lights  the  volume  is  scaled  down to  a 
more  manageable  size  and  the  colors  are  linearly 
interpolated. We found that around a 643 light cube map 
was the largest our systems could handle due to memory 
constraints but gave us acceptably realistic lighting. The 
tracer scans through the scaled down volume and adds any 
points with a brightness above a specified threshold into 
the scene (Figure 5). By only adding the brighter lights to 
the scene we save a substantial amount time that would be 
spent tracing to lights with little to no contribution to the 
final color. 

During the tracing stages the volume is treated as a AABB 
(Axis Aligned Bounding Box). We choose to implement a 
very  simple  AABB-ray  intersection  algorithm.  Faster, 
more complicated algorithms exist, but we felt the speed 
increase would be insignificant compared to the amount of 
time spent tracing through the volume and the amount of 
time it  would take to implement.  In addition to keeping 
track  of  the  t  value,  or  distance  from ray origin  to  an 
intersection with an object, the distance to the exit of the 
object is stored as well, called tfar. To determine the color 
of  a pixel  whose ray intersects with the AABB the ray 

Figure 4: Branch, B, splitting off after a segment has  
been split.Figure  3:  Line  Segment  after  L-System 
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tracer starts at the point marked by t, and steps through the 
volume by a delta (usually .25 units) of a unit at a time 
until it reaches tfar. At each step the values of the closest 
points  are  interpolated  and  summed  as  the  tracer 
progresses.

We choose an additive  color  model,  using the  equation 
diffuse += light_color*Δ  where the delta is used to step 
the strength of a light.  We chose this method because our 
volumes  are  purely  emissive  with  each  particle  only 
emitting  light  and  having  no  diffuse  or  specular 
components.  After  the  volume  is  traced  through,  a 
secondary ray is shot out of the back of the AABB and the 
resulting  color  is  added  in.  This  accounts  for  the 
transparency of the volume.

4   Results
To render the volume image with the size of 2563 with one 
lightning bolt (one original segment, eight levels of detail), 
on  a  2.6  GHz  Pentium IV machine  took  40.4  seconds. 
Simply increasing the number of bolts does not double the 
time,  simply taking  40.9  seconds  when  two  bolts  were 
computed.  The solution is very scalable when any number 
of lightning bolts.  The primary time consumption, over 
60%,  comes  from  the  Canny-Deriche  blur  filter  to 
calculate the glow map.

Memory is often a major issue with this implementation. 
If the image has the size of WxHxD with RGBA, then the 
size  of  memory  must  be  8*W*H*D.   The  memory 
overhead comes from the fact the image is RGBA, and the 
glow filter needs to store a second copy of the image.

Ray tracing a volume takes significantly more time.  The 
scene seen in (Figure 1) takes 523 seconds to render on a 
Core  2  Duo  2  GHz system with  2  GB of  RAM.   The 
majority of memory used by the program is taken up by 
storing  the  volume  texture  within  memory,  which  is 
4*W*H*D.

5   Future Work
This solution comes out with decent results, however, is 
not  perfect.   Some of its  main issues lie  in its  memory 
consumption  and  render  time.   Reduction  of  these 
resources would be possible with more time and research 
into the project.

5.1   Difficulties in Generation

As mentioned in 3.1, the L-System technique to generate 
bolt  “fractals”  was  used  only  after  trying  two  other 
techniques.  The first technique that was attempted was the 
physically  based  method  as  described  in  [2]  and  [3]. 
Time, knowledge of physics, and resources went into our 
inability to  implement  this  method.   As  realistic  as  the 
equations were, the method in the paper did have its flaws. 
Their  implementation  limited  the  result  to  a  two 
dimensional  image,  and  often  had  artifacts  where  the 
image  was  placed  in  the  rendering.   This  method  was 
abandoned  after  realizing  its  mathematical  and 
implementation complexity.

The  next  attempt  was  a  common  method  using  Perlin 
noise differences and gamma correction.  The idea was to 
make two passes at Perlin noise, subtract the differences, 
invert the image, and apply a high value gamma filter to it. 
This produced electricity-like results, but had the problem 
that it could not isolate a single bolt.  In addition, when the 
algorithm was extended to encompass the third dimension, 
it no longer looked like any electrical field, but rather, it 
appeared to be caverns.  After applying more filters and 
trying to isolate a certain region to turn into a single bolt 
within the 3D field, the method was again abandoned for 
its inability to produce convincing results.

The method we  chose to  go with using L-Systems  was 
relatively  straight  forward  to  implement  in  two 
dimensions, and was not hard to extend to three.  One of 
the  main  difficulties  was  picking  probabilities  and 
intensity ratios to provide a believable result.  Regardless, 
this  method  had  overall  better  performance  and  results 
than the previously attempted methods.

Figure 5: Calculating light from an object looking 
at simplified voxels in the lightning



5.2   Difficulties in Volumes

We  ran  into  several  difficulties  in  creating  the  volume 
tracer.  First  we  saw strange  noise  in  circular  groupings 
(Figure 6). We determined this to be caused by too large 
of a Δ step while tracing through the volume. If the Δ was 
too large it would skip over multiple voxels while tracing 
through at large angles. Reducing the step to much smaller 
than the resolution of the grid fixed this.

There  were  also  some  issues  determining  what  type  of 
color mixing to use. We experimented with both additive 
and  multiplicative  colors.  We  decided  on  an  additive 
technique because we felt that would best simulate the real 
behavior of a lightning bolt. To be extended to render non-
emissive volumes other coloring techniques would need to 
be implemented.

The tracer also does not deal with the case of other objects 
intersecting the volume. Currently in this case the objects 
intersecting  the  volume  are  'clipped'  by  the  AABB 
containing  the  volume.  Similarly  any  objects  with  a 
surface flush to one of the faces of the AABB will suffer 
from a noisy incorrect  appearance due to  floating point 
errors.  We simply offset other objects off of the AABB 
slightly.

5.3  Improvements

There are many possible improvements to the method this 
paper describes.  Memory is one of the biggest issues.  A 
5123 image takes 8 GB of memory just to generate!  One 
of the major improvements that could be made to the bolt 
generator is to simply take less memory by intelligently 

choosing  a  volume  size,  or  completely  abandoning  the 
volumetric method of storing lightning all together.  This 
would  also  increase  the  running  time  of  the  program 
because the Canny-Deriche filter only needs to go through 
a fraction of the pixels to generate the glow map.

Speed increases for the generator could also be found by 
switching to a more native library rather than relying on 
CImg  library's  image  abstraction  classes,  which  are 
heavily functional, but bloated [6].

6   Conclusion
Our method renders realistic lightning successfully within 
another  scene.   Lighting  affects  are  provided,  and  can 
relatively quickly (compared to rendering) generate new 
lightning bolts and save them to a volume texture.

The application could be improved in several ways to both 
speed up production using better  data  structures,  and to 
reduce memory consumption by storing lightning data in 
something other than a volume texture. 
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Figure  6:  Rendering  of  a  Perlin-generated  volume 
showing artifacts with a low delta



Figure 7: Initial test of 2D L-System generator

Figure 10: The L-System has the ability to follow 
a path (This image is simply a preview, and not a  
rendering).

Figure 8: Multiple beams of lightning in a single  
volume.

Figure 9: Lightning color can easily be changed to 
represent a variety of effects



Figure 12: Volume rendering of a grid Figure 11: Rendering of a volume lightning strike  
in a simple scene (Lightning is upside down in this  
image)

Figure 13: Rendering of scene with three different color lightning bolts
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