
Parallel Ray Tracing on the BlueGene/L
Ben Boeckel∗ Artem Kochnev† Abhishek Mukherjee‡ Taro Omiya§

Abstract

While libraries such as Nvidia’s CUDA can greatly optimize the
graphical application, it’s pipeline structure causes inaccuracies to
occur in lighting physics. As such, an efficient, accurate graphical
application is required Ray-tracing can render lightings very accu-
rately, but falls short in efficiency With a massively parallel system
such as BlueGene/L (BG/L), however, ray-tracing can be rendered
at a much faster speed.

Keywords: parallel, raytracing, bluegene

1 Introduction

Several attributes about ray-tracing lends itself well to networked
computers such as the BG/L, regardless of whether it uses threads
or Message Passing Interface (MPI). Each ray in ray-tracing acts
independently from each other, and communication between each
calculation occurs only in the end of tracing. Finally, ray-tracing
can be rendered using the CPU, only.

Through this project, we will prove that it is possible to generate
realistic graphics on a highly parallel system created originally for
scientific uses. The libraries we plan to use is the MPI library for
the BG/L. The results will be a PPM image file.

The program will be tested using the object models from Advanced
Computer Graphics. Various measurements will be used to test the
performance of our program: the number of processors, number of
models and texture, number of time rays can bounce, and number
of samples for shadows.

In addition, a few extensions were added to create several filters
similar to those found in image editors such as Adobe Photoshop.
With a little tweaking, we can give graphics a bit of an artistic taste.

2 Related Works

Several papers has already delved into the topic of ray tracing for
highly parallel systems. One notable work is from Benthin and his
work will ray tracing on the Cell processor, most commonly found
in Sony’s Playstation 3. His careful consideration in the architec-
ture of the processor demonstrates the importance of the system’s
structure in calculations. [Benthin et al. 2006]

A more thorough analysis is found in Badouel’s paper, where he
mentions the specific structures, algorithms, and varies strategies to
avoid costly data transfers on the Blue Gene L. He uses schedul-
ing and data managing to most effectively balance each proces-
sors’ workload and minimize latency. Furthermore, careful ways
of avoiding common parallel problems, such as deadlocks, are ad-
dressed from this paper. This will act as the main basis for our
project. [Badouel et al. 1994]

∗e-mail: boeckb@rpi.edu
†e-mail: kochna@rpi.edu
‡e-mail: mukhea2@rpi.edu
§e-mail: omiyat@rpi.edu

3 Parallelism

Ray tracing is inherently a very parallel operation. For each pixel
in the image, the algorithm traces out what will be hit by a ray
coming from the camera, and then tries to figure out what color that
object will be. The work for one pixel on the resulting image is
entirely independent from the work done on another pixel on the
screen. Therefore, it is possible to have N processors working on
its own pixel and simply joining the resulting colors together to get
a complete image.

3.1 Load Balancing

A couple interesting problems arise when going to multi-scalar pro-
cessors. One important problem is load balancing. Properly us-
ing multiple processors cannot be done unless every processor is
always doing work. Having times where processors have to wait
for another processors results will cause a program’s efficiency to
plummet. Thus work has to be distributed in such a way where
each processor is doing about the same amount of work. There
are a few ways to do this for ray tracing as discussed by [Badouel
et al. 1994]. These include things like preprocessing the image into
chunks and distributing it to the processors. However, we felt this
early preprocessing would not make sense for super-scalar archi-
tectures like the BG/L because it would just take too much time.
[Benthin et al. 2006] also discusses several load balancing schemes
that were specifically designed to match the Cell architecture and
it’s limitations in memory.

3.2 Implementation

We decided to go with an algorithm similar to the one from Baduel
et al., However, instead of preprocessing the data, we simply in-
dexed each pixel into a one dimensional array and gave processor
N all pixels, i, such that

i mod N ≡ 0 (1)

The idea behind this would be that each region would be shared
between the processors. Therefore if one region is difficult to com-
pute, all processors should have some share in the region.

4 Filters

In an image editor, a filter is an algorithm that converts the pixel
values to a new pixel to either remove unwanted artifacts or add an
artistic taste to an image. Often, in an image, a pixel is represented
by a red, green, and blue value each corresponding to additive col-
ors in lights. Using these values, we can recalculate and compile a
new image that gives a different impression from the original.

In this case, we created a gray-scale filter and a color-limiting filter
that recalculates the generated pixel value from each ray in the ray-
tracer.

4.1 Gray Scale

Each pixel in a gray scale image is represented, frequently, by a
single gamma value that represents a shade of gray. Finding the



gamma from an RGB value is, incidentally, very simple. We simply
have to find the weighted average of each value:

γ = WrR + WgG + WbB (2)

Where:
1 = Wr + Wg + Wb (3)

One can easily convert this back to the RGB format by setting the
red, green, and blue value equal to γ. It’s worth noting that the
weight values must be carefully chosen, as it represents each color’s
contribution to the image. For example, if we naively give equal
weights to red, green, and blue, we get an overly-lit image seen in
Figure 1.

To create the most acceptable color-to-gray-scale conversion, we
used the weight values from [MathWorks 2009] to get the bottom
image in Figure 1.

Wr = 0.299 (4)
Wg = 0.587 (5)
Wb = 0.114 (6)

Figure 1: Left image: original image. Right image: overly lit gray
scale image. Bottom image, fixed image

4.2 Limiting Color

Many image editors includes an option to posterize an image, ren-
dering a group of near-colored pixels to be shaded in one color.
While our program can not detect neighboring pixels, it can gen-
eralize colors to limited shades by calculating where it fall in the
spectrum of the RGB value.

Limiting the color spectrum is fairly easy. We divide the color spec-
trum evenly to the number of shades the user wants. If a pixel’s
value falls under any of the middle sections, we set it to a pre-
computed value corresponding to that portion. The only exception
is towards the two ends, where they will be set to either minimum
or maximum color value.

Figure 2: Left image: full red scale image. Right image: red scale
image limited to 3 shades.

The basic algorithm can be described as follows:

Let D be the quotient of maximum color value, M , divided by n
number of shades.

Let S = M/(n − 1).

For index i between 0 and n

If color red (r) is less than i × D, set r = S × i

Repeat for green (g) and blue (b).

Figure 3: Above: red, green, and blue are limited to 3 shades, for
a total of 27 colors.

5 Conclusion

5.1 Parallelism

Our parallel algorithm worked decently well except when the com-
putation for pixels is absurdly larger than the computation for other
pixels. For example, if the number of reflective bounces is set to
sixty, the computation becomes completely weighted against all the
processors that hold these pixels. Specifically for the BG/L, this is
an incredibly bad circumstance. The BG/L devotes all it’s resources
to multiple processors rather than processor speed. We encountered
multiple times when it seemed like the computer entered into a state
of deadlock, two or more processors are waiting for input from an-
other processor in the cycle so no one can do work, because the
processors just could not get any of the work done. It was believed
to be deadlock because the same computation could run on a simple
2GHz Intel Core 2TM laptop in a reasonable amount of time. The
difference was that the laptop could process a ray that bounces 100
times, while the 700MHz PowerPC processor in the BG/L could
not.



5.2 Performance

A few changes in stats were compared. For example, the time it
took to complete the ray tracing images in the BG/L are shown
in Figure 4 and Figure 5. Figure 4 shows a typical exponential
growth in time as the number of bounces calculated increases. This
is expected, as more bounces increases the number of times a ray
recurses.

Figure 5 is more unusual. One would expect the performance be-
havior in increasing the number of pixels would cause linear growth
in time, since a ray is issued for each pixel. This is not the case,
however. There is a sudden increase in performance when the num-
ber of pixels is increased to 2560000 units, before it continues off
with its usual linear growth. We believe this burst of performance
may come from the nature of how BG/L was built. Since 2560000
is a power of 2, it makes it simple for the system to make binary
computations.

For comparison, we decided to test our algorithm on a typical ma-
chine in figure 6.

Figure 4: Time to render number of bounces on a BG/L. The image
size used was 1024x1024.

Figure 5: Time to render number of pixels on a BG/L. The number
of bounces was 30 and the number of shadow bounces was 100.

Figure 6: Time to render number of bounces on a Intel Core 2 Duo,
1.8GHz, 2 GB RAM, customized desktop. The image size used was
200x200, and the number of shadow bounces was 10.

5.3 Filters

On filters, we were mostly satisfied with the gray scale filtering.
The limited colors also faired well to our expectations. However,
no pixel value had the ability to reference from their consecutive
neighbors. Since our filters had to be solely based on a single pixel
value, it created some unnecessary noise from very similar colors,
causing the image to look artificial. If we could devise a way to
read neighboring pixel values, we could implement a more intelli-
gent, visually pleasing filters to create artistic work. In addition, the
ability to format and re-map colors based on an external file could
add more expression to our limited and inflexible algorithm.

6 Citation

• Distributing data and control for ray tracing in parallel
This paper discusses the data structures to be used to minimize
data transfer in a parallel ray tracer. This will be an important
consideration for us, as we begin writing our program for the
BG/L. Although ray tracing is a relatively simple algorithm
to implement in a parallel fashion, the only way to get proper
efficiency out of the program is to manage the data, and the
workload, properly. We hope this paper will relieve some of
the burden of creating various parallel data structures to be
used. This paper also discusses the common deadlocks that
could occur in a ray tracing algorithm, which we also have to
avoid.[Badouel et al. 1994]

• Ray tracing on the cell processor This paper discusses the
special considerations that need to be taken into account for
developing a ray tracer on a parallel algorithm. The archi-
tecture they were building for, the Cell, is a very different
architecture from the BG/L that we will be building our al-
gorithm on. We belove that it will form a good basis to start
from in our discussions about how to create the algorithm on
the BG/L.[Benthin et al. 2006]

References

BADOUEL, D., BOUATOUCH, K., AND PRIOL, T. 1994. Distribut-
ing data and control for ray tracing in parallel. IEEE computer
graphics and applications 14, 4, 69–77.



BENTHIN, C., WALD, I., SCHERBAUM, M., AND FRIEDRICH, H.
2006. Ray tracing on the cell processor. In IEEE Symposium on
Interactive Ray Tracing 2006, 15–23.

MATHWORKS, 2009. How do i convert my rgb image
to grayscale without using the image processing tool-
box? http://www.mathworks.com/support/
solutions/data/1-1ASCU.html, Apr.


