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Abstract

Scene graphs are an increasingly
common data structure for scene
representation in graphics
applications and video games. It
organizes objects into a high level
representation, usually in C++ or
another language in the imperative
paradigm. In this paper, I propose a
method for creating and editting scene
graphs in Haskell, a lazy functional
programming language.
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1. Introduction
1.1 Scene Graphs

The graphics world saw the first
commercial scene graph in 1988 with
PHIGS [1], a 3D graphics programming
library and predecessor to OpenGL. Its
visualization process was simple:
define and link to a model in the
graphics database, then create a
workstation to display this model.
PHIGS suffered many severe
limitations such as inefficiency and
lack of ray tracing/radiosity solutions.

Scene graphs have evolved to take
on a variety of forms, but the general
function remains the same: arrange
logical and often spatial scene
elements into a graph or tree
structure. Generally, these structures

consist of a series of nodes where each
node has some number of children
and one or no parents. Scene graphs
can also be replaced with or include
spatial partitioning and bounding
volume hierarchies (BVHs).

Scene graphs are used in many
modern-day interactive applications,
such as AutoCAD, Adobe Illustrator
and OpenSceneGraph. They’re also
utilized in many modern game
engines including Ogre, Panda3D and
Gamebryo.

1.2 Haskell

Haskell [2] is a purely functional
programming language first
introduced in 1990. The goal was to
unite existing functional languages at
the time to a single highly research-
oriented effort. Haskell’s main
strengths lie in concurrency and
parallelism, both promising
possibilities in the world of cloud
rendering, multicore architectures
and supercomputers.

Haskell has several key principles
[3]. It's lazy-evaluated and purely
functional. It has no formal semantics.
It’s distinctive in that it’s the first
programming language to implement
type classes (see details in Section 2:
Implementation).

1.3 Motivation

A functional approach has two
major potential benefits: one, to the
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old standard file format for
representing 3D objects)
and later HOpenGL. On the
project’s website he states,
“...the current experiments
are encouraging, both in
terms of expressiveness
and in terms of
performance.”
Unfortunately, he stopped
working on the project not
long after the HOpenGL
implementation.

A 2000 paper by Jurgen
Dollner and Klaus Hinrichs
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Figure 1: A visualization of a sample scene graph hierarchy.
Image taken from article by Garret Foster [8]

community of functional
programmers that may have need of
it; and two, to users of scene graphs if
they find the functional model better
suits their needs.

The functional programming style
may provide distinct advantages in
scene graph implementation. For one,
referential transparency and
elimination of “side effects” in code
allows for quick, efficient debugging.
Lazy evaluation could cause drastic
improvements in runtime efficiency.

1.4 Related Work

In 2001, Claus Reinke [4] began
research into an experiment known as
FunWorlds (Functional Programming
and Virtual Worlds), using VRML (an

nodes are used to contains
the rendering objects, a set
of different categories of
objects that appear in the
rendered scene. Their work
treats light sources and
cameras as global objects
that are pre-evaluated
while render-objects are
evaluated in depth-first order.

Gerhard Reitmayr and Dieter
Schmalstieg reintroduce a number of
declarative properties in their 2005
paper Flexible Parameterization of
Scene Graphs [6]. Building on Dollner
and Hinrich’s ideas, they describe the
use of a context sensitive scene graph,
where the context represents a
mapping of indices within the graph to
values, and present the exposed graph
in a template pattern that decouples
content and presentation.

Both papers on generalized scene
graphs borrow many ideas from
Openlnventor [7], a high level scene
graph in OpenGL focused on code



convenience and efficiency.
Unfortunately it’s usually slower in
runtime than hand-coding OpenGL,
however it remains pretty popular for
its ease of use and extensibility.

2. Implementation

The implementation of scene
graphs in the functional paradigm has
many differences from the object-
oriented scene graph, despite the
common data structure.

2.1 Data Organization

The current implementation
contains datatypes organized in a
hierarchical structure: Scenes contain
a set of Models and a set of Lights. A

Model consists of a Mesh and Material.

Outside of the hierarchy are the
Camera and RasterImage data used in
rendering implementation.

In my implementation, I utilize
Haskell’s type class feature by
representing portions of the scene as
Generalised algebraic datatypes
(GADTSs) [9].

2.2 Utilizing GADTSs

GADTs are datatypes that lack a
standardly typed constructor. Types
can be defined arbitrarily and
evaluated according to their
definition. GADTs are used here to
represent expressions of numerous
datatypes, as seen in this code snippit:

data Expr x where

ModelE :: Expr Mesh -> Expr
Material -> Expr Model

MeshLitE
Mesh

:: Mesh -> Expr

MateriallLitE :: Material ->

Expr Material

CameralLitE :: Camera ->

Expr Camera

RasterizeE Expr Scene ->
Expr Camera -> Expr
RasterImage

Similarly, the code contains an
evaluation function for the given
expressions:

eval :: Expr a -> IO a
eval expr = case expr of

ModelE meshE matE -> op2
Model meshE matE

MeshLitE mesh -> return
mesh

MateriallLitE mat -> return
mat

CameralLitE cam -> return
cam

RasterizeE sceneExpr
camExpr -> do

scene <- eval sceneExpr
cam <- eval camExpr
return $ RasterBuffer ©

_ -> error "Unrecognized
production”

GADTs help to simplify types and
keep the code organized and succinct,
while provided a large amount of
flexibility for later additions or



modifications to the scene graph
structure.

3. Conclusion/Future Work

The implementation as it stands
represents a scene graph in only an
abstract sense; I'm now working to
create a more concrete
implementation of the graph along
with rendering solutions.

One interesting optimization would
take the concurrency and parallelism
strengths of Haskell and apply it to ray
tracing or radiosity solutions:
embarrassingly parallel portions such
as form factor calculation could be
significantly enhanced by a capable
system of parallelization.

Other additions to this research
include using an octree to spatially
recognize objects in the scene and
creating a bounding volume hierarchy.
Experiments with the lazy-evaluation
characteristic may also produce
optimizations.
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