
1.
 Motivation
As the computational power of both 
personal computers and game consoles 
continues to increase, it is becoming 
increasingly possible to offload complex 
tasks, such as terrain mesh generation, 
onto the end-users of these products.  The 
increased power of modern GPUs allows 
for the easy rendering of crisper, more 
detailed three-dimensional objects, 
objects that are currently either pre-
calculated and stored in formats that 
difficult to edit or stored in an 
intermediary form that is then computed 
into a final mesh at runtime.

Terrain is a prime example of a data set 
that is computed into a finalized model 
as the application is loaded.  The most 
common model, however, tends to 
produce comparatively ugly and 
inaccurate representations of terrain, 
using more triangles than would 
otherwise be necessary to produce a 
representation that does not necessarily 
capture all the important features of the 
terrain.  It is therefore the goal of this 
paper to take advantage of the 
computational power available today to 
generate a more realistic terrain 
representation from existing intermediary 
terrain data.

2.
 Prior Work
The most frequently used format for 
terrain mesh representation in video 
games is the digital elevation model, or 
DEM, which is also referred to as a 
height-map.  These height-maps take the 
form of uncompressed images that map 
elevation values to grayscale pixels.  In 
video games, flight simulators, and other 
real-time simulations that require 
representation of geographic data, these 
elevation values are directly mapped to a 
uniform grid of vertices, which produces 
a dense mesh of triangles that represents 
the terrain in three dimensions.

Another popular method of representing 
terrain data is the triangulated irregular 
mesh, or TIN, which is a mesh of 
irregularly spaced points that can more 
accurately represents terrain features.  
The points in these meshes are calculated 
through various means, depending on 
the implementation, but generally 
produce lower-density meshes with 
detailed clusters of points along 
important features while reducing 
triangle count in largely unvaried 
surfaces.  Triangulation is typically 
performed by constructing a two-
dimensional Delaunay triangulation of 
the generated points.  (Peucker, et.al., 
1978)
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3.
 Algorithm
The algorithm I use to generate contour-
driven terrain meshes consists of three 
main parts:  Contour angle calculation, 
local contour derivative calculation, and 
weighted point distribution.  
Triangulation is performed using existing 
techniques and is, as such, not the focus 
of this paper.

3.1
Contour Angle Calculation
The most important step of the algorithm 
is to calculate the angle of the contour at 
every point in the mesh.  These values are 
calculated and stored on a per-pixel basis 
in an array that is the same size as the 
input data.  The vertical slope between 
each pixel in the input data and its 
neighbors is calculated, then its inverse is 
used to create a normal vector for a 
hypothetical surface that bridges the two 
points.  These vectors are first normalized 
and then added together to produce an 
average normal for the point.  The 

vertical component of the vector is 
discarded and the vector re-normalized.  
By discarding the vertical component, we 
have eliminated the variance in the vector 
from the relative distance in height and 
left only the normal to the contour at the 
given point.  The angle of this two-
dimensional vector can then be 
trigonometrically calculated and then 
stored in an angle map.  As this operation 
must be performed for each pixel in the 
input DEM, this step of the algorithm 
runs in O(n) time, where n is the number 
of pixels in the input data.

Due to the limitations of storing DEM 
data in integer format, it is unfortunately 
frequent that a comparatively large 
segment of the terrain may be 
represented by a single value.  This 
makes impossible the calculation of 
angle, which relies on a change in vertical 
height to detect slope.  This results in 
large regions where there is no stored 
angle, which results in large 
discrepancies in final point weight.  As a 
result, a pixel-filling algorithm is used.  
For each region of the map that contains a 
relative plateau and thus no angles, the 
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Fig. 3.1.1: Normal vector calculation from 
neighboring pixels.

Fig. 3.1.2: Contour angle visualization for 
linearly distributed circle.



pixels immediately bordering the region 
are identified and marked.  The angle of 
each “empty” pixel is then calculated as 
the average of all bordering pixels, as 
weighted by the inverse square of the 
distance.  This tends to produce areas 
that have similar angle and, thus, 
minimal contour variation, throughout, 
except in the cases of very small regions 
bordered by steep changes.

3.2
Contour Derivative Calculation
A separate array is then created to store 
the local rate-of-change in the contours of 
the image.  For each pixel in the angle 
map, we first take the height of the pixel.  
Then, for each pair of neighboring pixel, 

we test to determine if the height value of 
the current pixel lies in between the 
values of the two test pixels.  If so, we 
linearly interpolate the angles of the test 
pixels between those two points to get an 
approximate angle of the contour at the 
given height.  As this algorithm, again, 
only visits each pixel in the angle map a 
handful of times, it can be run in O(n) 
time.

3.3
Mesh Point Spacing
Finally, the points in the mesh are spaced 
throughout the grid in a manner such 
that points are clustered around areas 
where the contours vary greatly while 
leaving relatively unchanging areas with 
very few points.  This is done by 
sweeping through the grid, determining 
at each pixel if there is a point already 
placed within a certain radius, and 
placing a point if there is not.  The 
minimum distance between points at any 
given place in the mesh is determined 
based on both a user-defined coarseness 
value and the rate of change of the 
contour at the given point.
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Fig. 3.1.3: Left:  angle map before pixel fill; 
Right: angle map after pixel fill
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Fig. 3.2.1: Linear interpolation of pixel height

Fig. 3.2.2: Left: angle map of sample data; 
Right: derivative of contours.  Shades of 
green indicate higher contour variation.



4.
 Results
Unfortunately, the limited capabilities of 
our input data proved to be quite 
problematic for our results.  The crucial 
issue that we discovered was the plateaus 
that were artifacts of the limited data 
range that bitmaps were able to provide 
us.  The nature of these plateaus made it 
impossible to smoothly calculate the 
angle of contour, resulting in angles that 
widely varied from pixel to pixel in very 
small regions.  As a result, the contour 
derivatives tended to show thin bands of 

very rapid change, which drastically 
increased the number of points placed in 
relatively unimportant areas.  Areas with 
even small amounts of variation created 
extremely rough points of terrain, 
resulting in very rough, visually distorted 
areas in the generated mesh.

Apart from these errors, however, points 
were placed accurately on peaks and 
ridges, especially where the angle of the 
contour changed rapidly.
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Fig. 4.1: Contour-driven representation of terrain. Note the triangle banding along the flat areas and the rough 
areas in the upper-right: artifacts produced by inaccuracies in the calculations brought on by integer clamping.



5.
 Conclusions
There are many improvements that can 
be made to this algorithm.  Potentially 
the most helpful would be a plateau-
detection algorithm that attempted to 
interpolate height values over flat 
surfaces to allow for the smoothness of 
ridges.  In addition, the point weights 
generated by this technique may be 
supplemented by weights generated by 
studying the changes in vertical slope, 
which would decrease triangle count in 
areas where there are rough variations in 
contour but the height remains relatively 
constant.
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