
1.
 Motivation
As the computational power of both
personal computers and game consoles
continues to increase, it is becoming
increasingly possible to offload complex
tasks, such as terrain mesh generation,
onto the end-users of these products. The
increased power of modern GPUs allows
for the easy rendering of crisper, more
detailed three-dimensional objects,
objects that are currently either pre-
calculated and stored in formats that
difficult to edit or stored in an
intermediary form that is then computed
into a final mesh at runtime.

Terrain is a prime example of a data set
that is computed into a finalized model
as the application is loaded. The most
common model, however, tends to
produce comparatively ugly and
inaccurate representations of terrain,
using more triangles than would
otherwise be necessary to produce a
representation that does not necessarily
capture all the important features of the
terrain. It is therefore the goal of this
paper to take advantage of the
computational power available today to
generate a more realistic terrain
representation from existing intermediary
terrain data.

2.
 Prior Work
The most frequently used format for
terrain mesh representation in video
games is the digital elevation model, or
DEM, which is also referred to as a
height-map. These height-maps take the
form of uncompressed images that map
elevation values to grayscale pixels. In
video games, flight simulators, and other
real-time simulations that require
representation of geographic data, these
elevation values are directly mapped to a
uniform grid of vertices, which produces
a dense mesh of triangles that represents
the terrain in three dimensions.

Another popular method of representing
terrain data is the triangulated irregular
mesh, or TIN, which is a mesh of
irregularly spaced points that can more
accurately represents terrain features.
The points in these meshes are calculated
through various means, depending on
the implementation, but generally
produce lower-density meshes with
detailed clusters of points along
important features while reducing
triangle count in largely unvaried
surfaces. Triangulation is typically
performed by constructing a two-
dimensional Delaunay triangulation of
the generated points. (Peucker, et.al.,
1978)

Contour-Driven Terrain Meshing
 Jeff Sult, 2009

3.
 Algorithm
The algorithm I use to generate contour-
driven terrain meshes consists of three
main parts: Contour angle calculation,
local contour derivative calculation, and
weighted point distribution.
Triangulation is performed using existing
techniques and is, as such, not the focus
of this paper.

3.1
Contour Angle Calculation
The most important step of the algorithm
is to calculate the angle of the contour at
every point in the mesh. These values are
calculated and stored on a per-pixel basis
in an array that is the same size as the
input data. The vertical slope between
each pixel in the input data and its
neighbors is calculated, then its inverse is
used to create a normal vector for a
hypothetical surface that bridges the two
points. These vectors are first normalized
and then added together to produce an
average normal for the point. The

vertical component of the vector is
discarded and the vector re-normalized.
By discarding the vertical component, we
have eliminated the variance in the vector
from the relative distance in height and
left only the normal to the contour at the
given point. The angle of this two-
dimensional vector can then be
trigonometrically calculated and then
stored in an angle map. As this operation
must be performed for each pixel in the
input DEM, this step of the algorithm
runs in O(n) time, where n is the number
of pixels in the input data.

Due to the limitations of storing DEM
data in integer format, it is unfortunately
frequent that a comparatively large
segment of the terrain may be
represented by a single value. This
makes impossible the calculation of
angle, which relies on a change in vertical
height to detect slope. This results in
large regions where there is no stored
angle, which results in large
discrepancies in final point weight. As a
result, a pixel-filling algorithm is used.
For each region of the map that contains a
relative plateau and thus no angles, the

Contour-Driven Terrain Meshing
 Jeff Sult, 2009

Fig. 3.1.1: Normal vector calculation from
neighboring pixels.

Fig. 3.1.2: Contour angle visualization for
linearly distributed circle.

pixels immediately bordering the region
are identified and marked. The angle of
each “empty” pixel is then calculated as
the average of all bordering pixels, as
weighted by the inverse square of the
distance. This tends to produce areas
that have similar angle and, thus,
minimal contour variation, throughout,
except in the cases of very small regions
bordered by steep changes.

3.2
Contour Derivative Calculation
A separate array is then created to store
the local rate-of-change in the contours of
the image. For each pixel in the angle
map, we first take the height of the pixel.
Then, for each pair of neighboring pixel,

we test to determine if the height value of
the current pixel lies in between the
values of the two test pixels. If so, we
linearly interpolate the angles of the test
pixels between those two points to get an
approximate angle of the contour at the
given height. As this algorithm, again,
only visits each pixel in the angle map a
handful of times, it can be run in O(n)
time.

3.3
Mesh Point Spacing
Finally, the points in the mesh are spaced
throughout the grid in a manner such
that points are clustered around areas
where the contours vary greatly while
leaving relatively unchanging areas with
very few points. This is done by
sweeping through the grid, determining
at each pixel if there is a point already
placed within a certain radius, and
placing a point if there is not. The
minimum distance between points at any
given place in the mesh is determined
based on both a user-defined coarseness
value and the rate of change of the
contour at the given point.

Contour-Driven Terrain Meshing
 Jeff Sult, 2009

Fig. 3.1.3: Left: angle map before pixel fill;
Right: angle map after pixel fill

100

10793

90 105

92

87

109

113

Fig. 3.2.1: Linear interpolation of pixel height

Fig. 3.2.2: Left: angle map of sample data;
Right: derivative of contours. Shades of
green indicate higher contour variation.

4.
 Results
Unfortunately, the limited capabilities of
our input data proved to be quite
problematic for our results. The crucial
issue that we discovered was the plateaus
that were artifacts of the limited data
range that bitmaps were able to provide
us. The nature of these plateaus made it
impossible to smoothly calculate the
angle of contour, resulting in angles that
widely varied from pixel to pixel in very
small regions. As a result, the contour
derivatives tended to show thin bands of

very rapid change, which drastically
increased the number of points placed in
relatively unimportant areas. Areas with
even small amounts of variation created
extremely rough points of terrain,
resulting in very rough, visually distorted
areas in the generated mesh.

Apart from these errors, however, points
were placed accurately on peaks and
ridges, especially where the angle of the
contour changed rapidly.

Contour-Driven Terrain Meshing
 Jeff Sult, 2009

Fig. 4.1: Contour-driven representation of terrain. Note the triangle banding along the flat areas and the rough
areas in the upper-right: artifacts produced by inaccuracies in the calculations brought on by integer clamping.

5.
 Conclusions
There are many improvements that can
be made to this algorithm. Potentially
the most helpful would be a plateau-
detection algorithm that attempted to
interpolate height values over flat
surfaces to allow for the smoothness of
ridges. In addition, the point weights
generated by this technique may be
supplemented by weights generated by
studying the changes in vertical slope,
which would decrease triangle count in
areas where there are rough variations in
contour but the height remains relatively
constant.

6.
 Bibiliography
T.K. Peucker, R.J. Fowler, J.J. Little, D.M. Mark.
“The Triangulate Irregular Network”, American
Society for Photogrammetry Proceedings, 1978.

R.J. Fowler, J.J. Little. “Automatic Extraction of
Irregular Network Digital Terrain Models”,
Proceedings of the 6th annual conference on
Computer graphics and interactive techniques,
1979.

D.T. Lee, B.J. Schachter. “Two algorithms for
constructing a Delaunay triangulation”.
International Journal of Parallel Programming 9-3,
1980, pg. 219-242.

Delaunay triangulation library written by Sjaak
Priester and distributed under GNU general
public license. Accessed from http://
www.codeguru.com/cpp/cpp/algorithms/
general/article.php/c8901 on April 22, 2009.

Contour-Driven Terrain Meshing
 Jeff Sult, 2009

http://www.codeguru.com/cpp/cpp/algorithms/general/article.php/c8901
http://www.codeguru.com/cpp/cpp/algorithms/general/article.php/c8901
http://www.codeguru.com/cpp/cpp/algorithms/general/article.php/c8901
http://www.codeguru.com/cpp/cpp/algorithms/general/article.php/c8901
http://www.codeguru.com/cpp/cpp/algorithms/general/article.php/c8901
http://www.codeguru.com/cpp/cpp/algorithms/general/article.php/c8901

