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CSCI-4530/6530  
Advanced Computer Graphics 

Barb Cutler 
cutler@cs.rpi.edu 

MRC 309A 

http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S09/ 
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Luxo Jr. 

Pixar Animation Studios, 1986 
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Topics for the Semester 
•  Meshes 

–  representation 
–  simplification 
–  subdivision surfaces 
–  generation 
–  volumetric modeling 

•  Simulation 
–  particle systems 
–  rigid body, deformation,  

cloth, wind/water flows 
–  collision detection 
–  weathering 

•  Rendering 
–  ray tracing 
–  appearance models 
–  shadows 
–  local vs. global 

illumination 
–  radiosity, photon 

mapping, subsurface 
scattering, etc.  

•  procedural modeling 
•  texture synthesis  
•  hardware & more … 
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Mesh Simplification 

Hoppe “Progressive Meshes” SIGGRAPH 1996 
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Mesh Generation & Volumetric Modeling 

Cutler et al., “Simplification and Improvement of 
Tetrahedral Models for Simulation”  2004 6 

Modeling – Subdivision Surfaces 

Hoppe et al., “Piecewise Smooth  
Surface Reconstruction” 1994 

Geri’s Game  
Pixar 1997 
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Particle Systems 

Star Trek: The Wrath of Khan   1982 8 

Physical Simulation 
•  Rigid Body Dynamics 
•  Collision Detection 
•  Fracture 
•  Deformation 

Müller et al., “Stable Real-Time  
Deformations” 2002 
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Fluid Dynamics 

Foster & Mataxas, 1996 

“Visual Simulation of Smoke” 
Fedkiw, Stam & Jensen  

SIGGRAPH 2001 
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Ray Casting 
•  For every pixel  

construct a ray from the eye  
– For every object in the scene 

•  Find intersection with the ray  
•  Keep the closest 
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Ray Tracing 
•  Shade (interaction of  

light and material) 
•  Secondary rays  

(shadows, reflection,  
refraction) “An Improved Illumination 

Model for Shaded Display” 
Whitted 1980 
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Subsurface Scattering 

Surface 

Jensen et al., “A Practical  
Model for Subsurface  
Light Transport”  2001 
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Appearance Models 

θi θr 

φi φr 

Henrik Wann Jensen 

Wojciech Matusik 
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Syllabus & Course Website 
http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/

S09/ 

•  Which version should I register for? 
–  CSCI 6530  

•  3 units of graduate credit 

–  CSCI 4530 
•  4 units of undergraduate credit 

 same lectures, assignments, quizzes, & grading criteria 

•  Other Questions? 

15 

Introductions – Who are you? 
•  name 
•  year/degree 
•  graphics background (if any) 
•  research/job interests 
•  why you are taking this class 
•  something fun, interesting, or unusual  

about yourself 
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Outline 
•  Course Overview 
•  Classes of Transformations 
•  Representing Transformations 
•  Combining Transformations 
•  Orthographic & Perspective Projections  
•  Example: Iterated Function Systems (IFS) 
•  OpenGL Basics 
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What is a Transformation? 
•  Maps points (x, y) in one coordinate system to 

points (x', y') in another coordinate system 

•  For example, Iterated Function System (IFS): 

x' = ax + by + c 
y' = dx + ey + f 
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Simple Transformations 

•  Can be combined 
•  Are these operations invertible? 

Yes, except scale = 0 
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Transformations are used to: 
•  Position objects in a scene 
•  Change the shape of objects 
•  Create multiple copies of objects 
•  Projection for virtual cameras 
•  Describe  

animations 
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Rigid-Body / Euclidean Transforms  

•  Preserves distances 
•  Preserves angles 

Translation 
Rotation 

Rigid / Euclidean 

Identity 
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Similitudes / Similarity Transforms 

•  Preserves angles 

Translation 
Rotation 

Rigid / Euclidean 

Similitudes 

Isotropic Scaling 
Identity 
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Linear Transformations 

Translation 
Rotation 

Rigid / Euclidean 
Linear 

Similitudes 

Isotropic Scaling 
Identity 

Scaling 

Shear 

Reflection 
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Linear Transformations 

•  L(p + q) = L(p) + L(q) 
•  L(ap) = a L(p) 

Translation 
Rotation 

Rigid / Euclidean 
Linear 

Similitudes 

Isotropic Scaling 

Scaling 

Shear 

Reflection 
Identity 
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Affine Transformations 

•  preserves  
parallel lines 

Translation 
Rotation 

Rigid / Euclidean 
Linear 

Similitudes 

Isotropic Scaling 

Scaling 

Shear 

Reflection 
Identity 

Affine 



5 

25 

Projective Transformations 

•  preserves lines 

Translation 
Rotation 

Rigid / Euclidean 
Linear 

Affine 

Projective 

Similitudes 

Isotropic Scaling 

Scaling 

Shear 

Reflection 

Perspective 

Identity 
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General (Free-Form) Transformation 
•  Does not preserve lines 
•  Not as pervasive, computationally more involved 

Sederberg and Parry, Siggraph 1986 
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Outline 
•  Course Overview 
•  Classes of Transformations 
•  Representing Transformations 
•  Combining Transformations 
•  Orthographic & Perspective Projections  
•  Example: Iterated Function Systems (IFS) 
•  OpenGL Basics 
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How are Transforms Represented? 

x' = ax + by + c 
y' = dx + ey + f 

x' 
y' 

a    b 
d    e 

c 
f 

= 
x 
y 

+ 

p'   =      M p    +   t 
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Homogeneous Coordinates 
•  Add an extra dimension 

•  in 2D, we use 3 x 3 matrices 
•  In 3D, we use 4 x 4 matrices 

•  Each point has an extra value, w 

x' 
y' 
z' 
w' 

= 

x 
y 
z 
w 

a 
e 
i 
m 

b 
f 
j 
n 

c 
g 
k 
o 

d 
h 
l 
p 

p'  =            M p 
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Translation in homogeneous coordinates 
x' = ax + by + c 
y' = dx + ey + f 

x' 
y' 
1 

a    b 
d    e 
0   0 

c 
f 
1 

= 
x 
y 
1 

p'   =      M p 

x' 
y' 

a    b 
d    e 

c 
f 

= 
x 
y 

+ 

p'   =      M p    +   t 

Affine formulation Homogeneous formulation 
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Homogeneous Coordinates 
•  Most of the time w = 1, and we can ignore it 

•  If we multiply a homogeneous coordinate  
by an affine matrix, w is unchanged 

x' 
y' 
z' 
1 

= 

x 
y 
z 
1 

a 
e 
i 
0 

b 
f 
j 
0 

c 
g 
k 
0 

d 
h 
l 
1 
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Homogeneous Visualization 
•  Divide by w to normalize (homogenize) 
•  W = 0?   

w = 1 

w = 2 

(0, 0, 1) = (0, 0, 2) = … 
(7, 1, 1) = (14, 2, 2) = … 
(4, 5, 1) = (8, 10, 2) = … 

Point at infinity (direction) 
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Translate (tx, ty, tz) 
•  Why bother with the  

extra dimension? 
Because now translations  
can be encoded in the matrix! 

= 

x 
y 
z 
1 

1 
0 
0 
0 

0 
1 
0 
0 

0 
0 
1 
0 

tx 

ty 

tz 

1 

Translate(c,0,0) 

x

y

p p' 

c 

x' 
y' 
z' 
1 
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Scale (sx, sy, sz) 
•  Isotropic (uniform)  

scaling:  sx = sy = sz 

x' 
y' 
z' 
1 

= 

x 
y 
z 
1 

sx 

0 
0 
0 

0 
sy 

0 
0 

0 
0 
sz 

0 

0 
0 
0 
1 

Scale(s,s,s) 

x

p

p' 

q
q' 

y

35 

Rotation 
•  About z axis 

x' 
y' 
z' 
1 

= 

x 
y 
z 
1 

cos θ 
sin θ 

0 
0 

-sin θ 
 cos θ 

0 
0 

0 
0 
1 
0 

0 
0 
0 
1 

ZRotate(θ) 

x

y

z 

p

p' 

θ 
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Rotation 
•  About (kx, ky, kz), a unit  

vector on an arbitrary axis 
(Rodrigues Formula) 

x' 
y' 
z' 
1 

= 

x 
y 
z 
1 

kxkx(1-c)+c 
kykx(1-c)+kzs 
kzkx(1-c)-kys 

0 

0 
0 
0 
1 

 kzkx(1-c)-kzs 
kzkx(1-c)+c 
kzkx(1-c)-kxs 

0 

 kxkz(1-c)
+kys 

kykz(1-c)-kxs 
kzkz(1-c)+c 

0 
where   c = cos θ   &   s = sin θ  

Rotate(k, θ) 

x

y

z 

θ 

k 
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Storage 
•  Often, w is not stored (always 1) 
•  Needs careful handling of direction vs. point 

– Mathematically, the simplest is to encode directions 
with w = 0 

–  In terms of storage, using a 3-component array for 
both direction and points is more efficient 

– Which requires to have special operation routines for 
points vs. directions 
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Outline 
•  Course Overview 
•  Classes of Transformations 
•  Representing Transformations 
•  Combining Transformations 
•  Orthographic & Perspective Projections  
•  Example: Iterated Function Systems (IFS) 
•  OpenGL Basics 
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How are transforms combined? 

(0,0) 
(1,1) 

(2,2) 

(0,0) 

(5,3) 

(3,1) 
Scale(2,2) Translate(3,1) 

TS  = 
2 

0 
0 
2 

0 
0 

1 

0 
0 
1 

3 
1 

2 

0 
0 
2 

3 
1 = 

Scale then Translate 

Use matrix multiplication:   p'  =  T ( S p )  =  TS p 

Caution: matrix multiplication is NOT commutative! 

0 0 1 0 0 1 0 0 1 
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Non-commutative Composition 
Scale then Translate:   p'  =  T ( S p )  =  TS p 

Translate then Scale:   p'  =  S ( T p )  =  ST p 

(0,0) 

(1,1) 
(4,2) 

(3,1) 

(8,4) 

(6,2) 

(0,0) 
(1,1) 

(2,2) 

(0,0) 

(5,3) 

(3,1) 
Scale(2,2) Translate(3,1) 

Translate(3,1) Scale(2,2) 
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TS  = 
2 

0 
0 

0 
2 

0 

0 
0 
1 

1 

0 
0 

0 
1 

0 

3 
1 
1 

ST  = 
2 

0 
0 
2 

0 
0 

1 

0 
0 
1 

3 
1 

Non-commutative Composition 
Scale then Translate:   p'  =  T ( S p )  =  TS p 

2 

0 
0 

0 
2 

0 

3 
1 
1 

2 

0 
0 
2 

6 
2 

= 

= 

Translate then Scale:   p'  =  S ( T p )  =  ST p 

0 0 1 0 0 1 0 0 1 
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Outline 
•  Course Overview 
•  Classes of Transformations 
•  Representing Transformations 
•  Combining Transformations 
•  Orthographic & Perspective Projections  
•  Example: Iterated Function Systems (IFS) 
•  OpenGL Basics 
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Orthographic vs. Perspective 
•  Orthographic 

•  Perspective 

44 

Simple Orthographic Projection 
•  Project all points along the z axis to the z = 0 plane 

x 
y 
0 
1 

= 

x 
y 
z 
1 

1 
0 
0 
0 

0 
1 
0 
0 

0 
0 
0 
0 

0 
0 
0 
1 
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•  Project all points along the z axis to the z = d plane, 
eyepoint at the origin: 

Simple Perspective Projection 

x 
y 
z 

z / d 

= 

x 
y 
z 
1 

1 
0 
0 
0 

0 
1 
0 
0 

0 
0 
1 

1/d 

0 
0 
0 
0 

x * d / z 
y * d / z 

d 
1 

= 

homogenize 
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Alternate Perspective Projection 
•  Project all points along the z axis to the z = 0 

plane, eyepoint at the (0,0,-d): 

x 
y 
0 

(z + d)/ d  

= 

x 
y 
z 
1 

1 
0 
0 
0 

0 
1 
0 
0 

0 
0 
0 

1/d 

0 
0 
0 
1 

x * d / (z + d) 
y * d / (z + d) 

0 
1 

= 

homogenize 
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In the limit, as d → ∞ 

1 
0 
0 
0 

0 
1 
0 
0 

0 
0 
0 

1/d 

0 
0 
0 
1 

1 
0 
0 
0 

0 
1 
0 
0 

0 
0 
0 
0 

0 
0 
0 
1 

→ 

...is simply an  
orthographic projection 

this  perspective  
projection matrix... 
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Outline 
•  Course Overview 
•  Classes of Transformations 
•  Representing Transformations 
•  Combining Transformations 
•  Orthographic & Perspective Projections  
•  Example: Iterated Function Systems (IFS) 
•  OpenGL Basics 
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Iterated Function Systems (IFS) 

•  Capture self-similarity 
•  Contraction  

(reduce distances) 
•  An attractor is a  

fixed point 
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Example: Sierpinski Triangle 
•  Described by a set of n affine transformations  
•  In this case, n = 3 

–  translate & scale by 0.5  
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Example: Sierpinski Triangle 
for “lots” of random input points (x0, y0) 

for j=0 to num_iters 
randomly pick one of the transformations 
(xk+1, yk+1) = fi (xk, yk) 

display (xk, yk) 

Increasing the number of iterations 
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Another IFS: The Dragon 

53 

3D IFS in OpenGL 

GL_QUADS  

GL_POINTS 

54 

Assignment 0:  OpenGL Warmup 
•  Get familiar with: 

– C++ environment 
– OpenGL 
– Transformations 
–  simple Vector &  

Matrix  classes 
•  Have Fun! 

•  Will not be graded  
(but you should still do it and submit it!) 
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Outline 
•  Course Overview 
•  Classes of Transformations 
•  Representing Transformations 
•  Combining Transformations 
•  Orthographic & Perspective Projections  
•  Example: Iterated Function Systems (IFS) 
•  OpenGL Basics 
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OpenGL Basics: GL_POINTS 

glDisable(GL_LIGHTING);  
glBegin(GL_POINTS); 
glColor3f(0.0,0.0,0.0);  
glVertex3f(…); 
glEnd(); 

•  lighting should be disabled...  
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OpenGL Basics: GL_QUADS 

glEnable(GL_LIGHTING);  
glBegin(GL_QUADS); 
glNormal3f(…); 
glColor3f(1.0,0.0,0.0); 
glVertex3f(…); 
glVertex3f(…); 
glVertex3f(…); 
glVertex3f(…); 
glEnd(); 

•  lighting should be enabled...  
•  an appropriate normal should be specified 
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OpenGL Basics: Transformations 
•  Useful commands: 

glMatrixMode(GL_MODELVIEW); 
glPushMatrix(); 
glPopMatrix(); 
glMultMatrixf(…); 

From OpenGL Reference Manual 
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Questions? 

Image by Henrik Wann Jensen 
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For Next Time: 
•  Read Hugues Hoppe “Progressive Meshes” 

SIGGRAPH 1996 
•  Post a comment or question on the course 

WebCT/LMS discussion by 10am on Friday 1/15 


