

Luxo Jr.

Mesh Simplification

Hoppe "Progressive Meshes" SIGGRAPH 1996

Fluid Dynamics

Foster \& Mataxas, 1996

Ray Casting

- For every pixel construct a ray from the eye
- For every object in the scene
- Find intersection with the ray
- Keep the closest

Introductions - Who are you?

- name
- year/degree
- graphics background (if any)
- research/job interests
- why you are taking this class
- something fun, interesting, or unusual about yourself

Syllabus \& Course Website

http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/ S09/

- Which version should I register for?
- CSCI 6530
- 3 units of graduate credit
- CSCI 4530
- 4 units of undergraduate credit
same lectures, assignments, quizzes, \& grading criteria
- Other Questions?

Outline

- Course Overview
- Classes of Transformations
- Representing Transformations
- Combining Transformations
- Orthographic \& Perspective Projections
- Example: Iterated Function Systems (IFS)
- OpenGL Basics

What is a Transformation?

- Maps points (x, y) in one coordinate system to points (x^{\prime}, y^{\prime}) in another coordinate system

$$
\begin{aligned}
& x^{\prime}=a x+b y+c \\
& y^{\prime}=d x+e y+f
\end{aligned}
$$

- For example, Iterated Function System (IFS):

Simple Transformations

Identity

Translation

Rotation

- Can be combined
- Are these operations invertible?

Yes, except scale $=0$

Rigid-Body / Euclidean Transforms

Outline

- Course Overview
- Classes of Transformations
- Representing Transformations
- Combining Transformations
- Orthographic \& Perspective Projections
- Example: Iterated Function Systems (IFS)
- OpenGL Basics

General (Free-Form) Transformation

- Does not preserve lines
- Not as pervasive, computationally more involved

Fig 1. Undelormed Plastic
Fig 2. Deformed Plastic

Sederberg and Parry, Siggraph 1986

How are Transforms Represented?

$$
\begin{aligned}
x^{\prime} & =a x+b y+c \\
y^{\prime} & =d x+e y+f \\
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right] } & =\left(\begin{array}{ll}
a & b \\
d & e
\end{array}\right)\binom{x}{y}+\binom{c}{f} \\
p^{\prime} & =M p+t
\end{aligned}
$$

Homogeneous Coordinates

- Add an extra dimension
- in 2D, we use 3×3 matrices
- In 3D, we use 4×4 matrices
- Each point has an extra value, w

$$
\begin{aligned}
& \left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right]=\left(\begin{array}{llll}
a & b & c & d \\
e & f & g & h \\
i & j & k & l \\
m & n & o & p
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right] \\
& p^{\prime}=\begin{array}{l}
M p
\end{array}
\end{aligned}
$$

Translation in homogeneous coordinates
\(\left.$$
\begin{array}{c}x^{\prime}=a x+b y+c \\
y^{\prime}=d x+e y+f \\
\text { Affine formulation } \\
\left(\begin{array}{l}x^{\prime} \\
y^{\prime}\end{array}\right]=\left(\begin{array}{ll}a & b \\
d & e\end{array}\right)\left(\begin{array}{l}x \\
y\end{array}\right]+\binom{c}{f}\left(\begin{array}{l}x^{\prime} \\
y^{\prime} \\
l\end{array}\right)=\left(\begin{array}{lll}a & b & c \\
d & e & f \\
0 & 0 & l\end{array}\right)\left(\begin{array}{l}x \\
y \\
l\end{array}
$$\right)

p^{\prime}=M p+t\end{array}\right]\)| $p^{\prime}=M p$ |
| :--- |

Homogeneous Coordinates

- Most of the time $w=1$, and we can ignore it

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{llll}
a & b & c & d \\
e & f & g & h \\
i & j & k & l \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)
$$

- If we multiply a homogeneous coordinate by an affine matrix, w is unchanged

Homogeneous Visualization

- Divide by w to normalize (homogenize)
- $\mathrm{W}=0$? Point at infinity (direction)

Scale ($s x, s y, s z$)

$$
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{cccc}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right)
$$

- Isotropic (uniform) scaling: $s_{x}=s_{y}=s_{z}$

Storage

- Often, w is not stored (always 1)
- Needs careful handling of direction vs. point
- Mathematically, the simplest is to encode directions with $w=0$
- In terms of storage, using a 3-component array for both direction and points is more efficient
- Which requires to have special operation routines for points vs. directions

How are transforms combined?

Scale then Translate

Use matrix multiplication: $\mathrm{p}^{\prime}=\mathrm{T}(\mathrm{Sp})=\mathrm{TS} \mathrm{p}$

$$
T S=\left(\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
2 & 0 & 3 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

Caution: matrix multiplication is NOT commutative!

Outline

- Course Overview
- Classes of Transformations
- Representing Transformations
- Combining Transformations
- Orthographic \& Perspective Projections
- Example: Iterated Function Systems (IFS)
- OpenGL Basics

Non-commutative Composition

Scale then Translate: $\mathrm{p}^{\prime}=\mathrm{T}(\mathrm{Sp})=\mathrm{TS} \mathrm{p}$

Translate then Scale: $\mathrm{p}^{\prime}=\mathrm{S}(\mathrm{T} p)=\mathrm{ST} \mathrm{p}$

Non-commutative Composition

Scale then Translate: $\mathrm{p}^{\prime}=\mathrm{T}(\mathrm{S} p)=\mathrm{TS} \mathrm{p}$

$$
T S=\left(\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
2 & 0 & 3 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

Translate then Scale: $\mathrm{p}^{\prime}=\mathrm{S}(\mathrm{T} p)=\mathrm{ST} \mathrm{p}$

$$
S T=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
2 & 0 & 6 \\
0 & 2 & 2 \\
0 & 0 & 1
\end{array}\right)
$$

Outline

- Course Overview
- Classes of Transformations
- Representing Transformations
- Combining Transformations
- Orthographic \& Perspective Projections
- Example: Iterated Function Systems (IFS)
- OpenGL Basics

Orthographic vs. Perspective

- Orthographic

- Perspective

Simple Perspective Projection

- Project all points along the z axis to the $z=d$ plane,

Simple Orthographic Projection

- Project all points along the z axis to the $z=0$ plane

$$
\left(\begin{array}{l}
x \\
y \\
0 \\
1
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)
$$

Alternate Perspective Projection

- Project all points along the z axis to the $z=0$ plane, eyepoint at the $(0,0,-d)$:
$x_{p}=\frac{d \cdot x}{z+d}=\frac{x}{(z / d)+1}$
$y_{p}=\frac{d \cdot y}{z+d}=\frac{y}{(z / d)+1}$
homogenize
$\left(\begin{array}{c}x * d /(z+d) \\ y * d /(z+d) \\ 0 \\ 1\end{array}\right)=\left[\begin{array}{c}x \\ y \\ 0 \\ (z+d) / d\end{array}\right)=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 / d & 1\end{array}\right]\left[\begin{array}{c}x \\ y \\ z \\ 1 \\ 4\end{array}\right]$

Outline

- Course Overview
- Classes of Transformations
- Representing Transformations
- Combining Transformations
- Orthographic \& Perspective Projections
- Example: Iterated Function Systems (IFS)
- OpenGL Basics

Assignment 0: OpenGL Warmup

- Get familiar with:
- C++ environment
- OpenGL
- Transformations
- simple Vector \& Matrix classes
- Have Fun!
- Will not be graded
(but you should still do it and submit it!)

Outline	
- Course Overview	
- Classes of Transformations	
- Representing Transformations	
- Combining Transformations	
- Orthographic \& Perspective Projections	
- Example: Iterated Function Systems (IFS)	
- OpenGL Basics	

OpenGL Basics: GL_POINTS

glDisable (GL_LIGHTING); glBegin(GL_POINTS); glColor3f($0.0,0.0,0.0$); glVertex3f(...);

```
glEnd();
```

- lighting should be disabled...

OpenGL Basics: Transformations

- Useful commands:
glMatrixMode (GL_MODELVIEW) ;
glPushMatrix();
glPopMatrix();
glMultMatrixf((..);

For Next Time:

- Read Hugues Hoppe "Progressive Meshes" SIGGRAPH 1996
- Post a comment or question on the course WebCT/LMS discussion by 10 am on Friday $1 / 15$

