
1

1

CSCI-4530/6530
Advanced Computer Graphics

Barb Cutler
cutler@cs.rpi.edu

MRC 309A

http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S09/

2

Luxo Jr.

Pixar Animation Studios, 1986

3

Topics for the Semester
•  Meshes

–  representation
–  simplification
–  subdivision surfaces
–  generation
–  volumetric modeling

•  Simulation
–  particle systems
–  rigid body, deformation,

cloth, wind/water flows
–  collision detection
–  weathering

•  Rendering
–  ray tracing
–  appearance models
–  shadows
–  local vs. global

illumination
–  radiosity, photon

mapping, subsurface
scattering, etc.

•  procedural modeling
•  texture synthesis
•  hardware & more …

4

Mesh Simplification

Hoppe “Progressive Meshes” SIGGRAPH 1996

5

Mesh Generation & Volumetric Modeling

Cutler et al., “Simplification and Improvement of
Tetrahedral Models for Simulation” 2004 6

Modeling – Subdivision Surfaces

Hoppe et al., “Piecewise Smooth
Surface Reconstruction” 1994

Geri’s Game
Pixar 1997

2

7

Particle Systems

Star Trek: The Wrath of Khan 1982 8

Physical Simulation
•  Rigid Body Dynamics
•  Collision Detection
•  Fracture
•  Deformation

Müller et al., “Stable Real-Time
Deformations” 2002

9

Fluid Dynamics

Foster & Mataxas, 1996

“Visual Simulation of Smoke”
Fedkiw, Stam & Jensen

SIGGRAPH 2001

10

Ray Casting
•  For every pixel

construct a ray from the eye
– For every object in the scene

•  Find intersection with the ray
•  Keep the closest

11

Ray Tracing
•  Shade (interaction of

light and material)
•  Secondary rays

(shadows, reflection,
refraction) “An Improved Illumination

Model for Shaded Display”
Whitted 1980

12

Subsurface Scattering

Surface

Jensen et al., “A Practical
Model for Subsurface
Light Transport” 2001

3

13

Appearance Models

θi θr

φi φr

Henrik Wann Jensen

Wojciech Matusik

14

Syllabus & Course Website
http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/

S09/

•  Which version should I register for?
–  CSCI 6530

•  3 units of graduate credit

–  CSCI 4530
•  4 units of undergraduate credit

 same lectures, assignments, quizzes, & grading criteria

•  Other Questions?

15

Introductions – Who are you?
•  name
•  year/degree
•  graphics background (if any)
•  research/job interests
•  why you are taking this class
•  something fun, interesting, or unusual

about yourself

16

Outline
•  Course Overview
•  Classes of Transformations
•  Representing Transformations
•  Combining Transformations
•  Orthographic & Perspective Projections
•  Example: Iterated Function Systems (IFS)
•  OpenGL Basics

17

What is a Transformation?
•  Maps points (x, y) in one coordinate system to

points (x', y') in another coordinate system

•  For example, Iterated Function System (IFS):

x' = ax + by + c
y' = dx + ey + f

18

Simple Transformations

•  Can be combined
•  Are these operations invertible?

Yes, except scale = 0

4

19

Transformations are used to:
•  Position objects in a scene
•  Change the shape of objects
•  Create multiple copies of objects
•  Projection for virtual cameras
•  Describe

animations

20

Rigid-Body / Euclidean Transforms

•  Preserves distances
•  Preserves angles

Translation
Rotation

Rigid / Euclidean

Identity

21

Similitudes / Similarity Transforms

•  Preserves angles

Translation
Rotation

Rigid / Euclidean

Similitudes

Isotropic Scaling
Identity

22

Linear Transformations

Translation
Rotation

Rigid / Euclidean
Linear

Similitudes

Isotropic Scaling
Identity

Scaling

Shear

Reflection

23

Linear Transformations

•  L(p + q) = L(p) + L(q)
•  L(ap) = a L(p)

Translation
Rotation

Rigid / Euclidean
Linear

Similitudes

Isotropic Scaling

Scaling

Shear

Reflection
Identity

24

Affine Transformations

•  preserves
parallel lines

Translation
Rotation

Rigid / Euclidean
Linear

Similitudes

Isotropic Scaling

Scaling

Shear

Reflection
Identity

Affine

5

25

Projective Transformations

•  preserves lines

Translation
Rotation

Rigid / Euclidean
Linear

Affine

Projective

Similitudes

Isotropic Scaling

Scaling

Shear

Reflection

Perspective

Identity

26

General (Free-Form) Transformation
•  Does not preserve lines
•  Not as pervasive, computationally more involved

Sederberg and Parry, Siggraph 1986

27

Outline
•  Course Overview
•  Classes of Transformations
•  Representing Transformations
•  Combining Transformations
•  Orthographic & Perspective Projections
•  Example: Iterated Function Systems (IFS)
•  OpenGL Basics

28

How are Transforms Represented?

x' = ax + by + c
y' = dx + ey + f

x'
y'

a b
d e

c
f

=
x
y

+

p' = M p + t

29

Homogeneous Coordinates
•  Add an extra dimension

•  in 2D, we use 3 x 3 matrices
•  In 3D, we use 4 x 4 matrices

•  Each point has an extra value, w

x'
y'
z'
w'

=

x
y
z
w

a
e
i
m

b
f
j
n

c
g
k
o

d
h
l
p

p' = M p
30

Translation in homogeneous coordinates
x' = ax + by + c
y' = dx + ey + f

x'
y'
1

a b
d e
0 0

c
f
1

=
x
y
1

p' = M p

x'
y'

a b
d e

c
f

=
x
y

+

p' = M p + t

Affine formulation Homogeneous formulation

6

31

Homogeneous Coordinates
•  Most of the time w = 1, and we can ignore it

•  If we multiply a homogeneous coordinate
by an affine matrix, w is unchanged

x'
y'
z'
1

=

x
y
z
1

a
e
i
0

b
f
j
0

c
g
k
0

d
h
l
1

32

Homogeneous Visualization
•  Divide by w to normalize (homogenize)
•  W = 0?

w = 1

w = 2

(0, 0, 1) = (0, 0, 2) = …
(7, 1, 1) = (14, 2, 2) = …
(4, 5, 1) = (8, 10, 2) = …

Point at infinity (direction)

33

Translate (tx, ty, tz)
•  Why bother with the

extra dimension?
Because now translations
can be encoded in the matrix!

=

x
y
z
1

1
0
0
0

0
1
0
0

0
0
1
0

tx

ty

tz

1

Translate(c,0,0)

x

y

p p'

c

x'
y'
z'
1

34

Scale (sx, sy, sz)
•  Isotropic (uniform)

scaling: sx = sy = sz

x'
y'
z'
1

=

x
y
z
1

sx

0
0
0

0
sy

0
0

0
0
sz

0

0
0
0
1

Scale(s,s,s)

x

p

p'

q
q'

y

35

Rotation
•  About z axis

x'
y'
z'
1

=

x
y
z
1

cos θ
sin θ

0
0

-sin θ
 cos θ

0
0

0
0
1
0

0
0
0
1

ZRotate(θ)

x

y

z

p

p'

θ

36

Rotation
•  About (kx, ky, kz), a unit

vector on an arbitrary axis
(Rodrigues Formula)

x'
y'
z'
1

=

x
y
z
1

kxkx(1-c)+c
kykx(1-c)+kzs
kzkx(1-c)-kys

0

0
0
0
1

 kzkx(1-c)-kzs
kzkx(1-c)+c
kzkx(1-c)-kxs

0

 kxkz(1-c)
+kys

kykz(1-c)-kxs
kzkz(1-c)+c

0
where c = cos θ & s = sin θ

Rotate(k, θ)

x

y

z

θ

k

7

37

Storage
•  Often, w is not stored (always 1)
•  Needs careful handling of direction vs. point

– Mathematically, the simplest is to encode directions
with w = 0

–  In terms of storage, using a 3-component array for
both direction and points is more efficient

– Which requires to have special operation routines for
points vs. directions

38

Outline
•  Course Overview
•  Classes of Transformations
•  Representing Transformations
•  Combining Transformations
•  Orthographic & Perspective Projections
•  Example: Iterated Function Systems (IFS)
•  OpenGL Basics

39

How are transforms combined?

(0,0)
(1,1)

(2,2)

(0,0)

(5,3)

(3,1)
Scale(2,2) Translate(3,1)

TS =
2

0
0
2

0
0

1

0
0
1

3
1

2

0
0
2

3
1 =

Scale then Translate

Use matrix multiplication: p' = T (S p) = TS p

Caution: matrix multiplication is NOT commutative!

0 0 1 0 0 1 0 0 1

40

Non-commutative Composition
Scale then Translate: p' = T (S p) = TS p

Translate then Scale: p' = S (T p) = ST p

(0,0)

(1,1)
(4,2)

(3,1)

(8,4)

(6,2)

(0,0)
(1,1)

(2,2)

(0,0)

(5,3)

(3,1)
Scale(2,2) Translate(3,1)

Translate(3,1) Scale(2,2)

41

TS =
2

0
0

0
2

0

0
0
1

1

0
0

0
1

0

3
1
1

ST =
2

0
0
2

0
0

1

0
0
1

3
1

Non-commutative Composition
Scale then Translate: p' = T (S p) = TS p

2

0
0

0
2

0

3
1
1

2

0
0
2

6
2

=

=

Translate then Scale: p' = S (T p) = ST p

0 0 1 0 0 1 0 0 1

42

Outline
•  Course Overview
•  Classes of Transformations
•  Representing Transformations
•  Combining Transformations
•  Orthographic & Perspective Projections
•  Example: Iterated Function Systems (IFS)
•  OpenGL Basics

8

43

Orthographic vs. Perspective
•  Orthographic

•  Perspective

44

Simple Orthographic Projection
•  Project all points along the z axis to the z = 0 plane

x
y
0
1

=

x
y
z
1

1
0
0
0

0
1
0
0

0
0
0
0

0
0
0
1

45

•  Project all points along the z axis to the z = d plane,
eyepoint at the origin:

Simple Perspective Projection

x
y
z

z / d

=

x
y
z
1

1
0
0
0

0
1
0
0

0
0
1

1/d

0
0
0
0

x * d / z
y * d / z

d
1

=

homogenize

46

Alternate Perspective Projection
•  Project all points along the z axis to the z = 0

plane, eyepoint at the (0,0,-d):

x
y
0

(z + d)/ d

=

x
y
z
1

1
0
0
0

0
1
0
0

0
0
0

1/d

0
0
0
1

x * d / (z + d)
y * d / (z + d)

0
1

=

homogenize

47

In the limit, as d → ∞

1
0
0
0

0
1
0
0

0
0
0

1/d

0
0
0
1

1
0
0
0

0
1
0
0

0
0
0
0

0
0
0
1

→

...is simply an
orthographic projection

this perspective
projection matrix...

48

Outline
•  Course Overview
•  Classes of Transformations
•  Representing Transformations
•  Combining Transformations
•  Orthographic & Perspective Projections
•  Example: Iterated Function Systems (IFS)
•  OpenGL Basics

9

49

Iterated Function Systems (IFS)

•  Capture self-similarity
•  Contraction

(reduce distances)
•  An attractor is a

fixed point

50

Example: Sierpinski Triangle
•  Described by a set of n affine transformations
•  In this case, n = 3

–  translate & scale by 0.5

51

Example: Sierpinski Triangle
for “lots” of random input points (x0, y0)

for j=0 to num_iters
randomly pick one of the transformations
(xk+1, yk+1) = fi (xk, yk)

display (xk, yk)

Increasing the number of iterations

52

Another IFS: The Dragon

53

3D IFS in OpenGL

GL_QUADS

GL_POINTS

54

Assignment 0: OpenGL Warmup
•  Get familiar with:

– C++ environment
– OpenGL
– Transformations
–  simple Vector &

Matrix classes
•  Have Fun!

•  Will not be graded
(but you should still do it and submit it!)

10

55

Outline
•  Course Overview
•  Classes of Transformations
•  Representing Transformations
•  Combining Transformations
•  Orthographic & Perspective Projections
•  Example: Iterated Function Systems (IFS)
•  OpenGL Basics

56

OpenGL Basics: GL_POINTS

glDisable(GL_LIGHTING);
glBegin(GL_POINTS);
glColor3f(0.0,0.0,0.0);
glVertex3f(…);
glEnd();

•  lighting should be disabled...

57

OpenGL Basics: GL_QUADS

glEnable(GL_LIGHTING);
glBegin(GL_QUADS);
glNormal3f(…);
glColor3f(1.0,0.0,0.0);
glVertex3f(…);
glVertex3f(…);
glVertex3f(…);
glVertex3f(…);
glEnd();

•  lighting should be enabled...
•  an appropriate normal should be specified

58

OpenGL Basics: Transformations
•  Useful commands:

glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glPopMatrix();
glMultMatrixf(…);

From OpenGL Reference Manual

59

Questions?

Image by Henrik Wann Jensen

60

For Next Time:
•  Read Hugues Hoppe “Progressive Meshes”

SIGGRAPH 1996
•  Post a comment or question on the course

WebCT/LMS discussion by 10am on Friday 1/15

