Subdivision Surfaces II

Reading from Last Week...

- "Free-form deformation of solid geometric models", Sederberg \& Parry, SIGGRAPH 1986

Piecewise Smooth Surface Reconstruction

- From input: scanned mesh points
- Estimate topological type (genus)
- Mesh optimization (a.k.a. simplification)
- Smooth surface optimization

Reading for Today

- Hoppe et al., "Piecewise Smooth Surface Reconstruction" SIGGRAPH 1994

Adding creases to Loop Subdivision

- Vertex \& edge masks
- Limit masks
- Position
- Tangent

Questions?

Interpolating Subdivision

- Interpolation vs. Approximation of control points
- Handle arbitrary topological type
- Reduce the "extraneous bumps \& wiggles"

"Efficient, fair interpolation using Catmull-Clark surfaces", Halstead, Kass \& DeRose, SIGGRAPH 1993

Piecewise Smooth Surface Reconstruction

- Crease subdivision masks decouple behavior of surface on either side of crease
- Crease rules cannot model a cone
- Optimization can be done locally
- subdivision control points have only local influence
- Results
- Noise?
- Applicability?
- Limitations?
- Running Time

Interpolating Subdivision

- Chaikin:
- Doo-Sabin:

of the centroids of each edge/face

Interpolation of Catmull-Clark Surfaces

- Solve for a new control mesh (generally "bigger") such that when Catmull-Clark subdivision is applied it interpolates the original mesh

Vertex Position in Limit

- V_{n} stores the center vertex \& surrounding edge \& face vertices as a big column vector
 $V_{n}^{i+1}=\mathbf{S}_{n} V_{n}^{i}$
- When $\mathrm{n}=4$:

$V_{n}^{\infty}:=\lim _{i \rightarrow \infty} \mathbf{S}_{n}^{i} V_{n}^{1}$

Solve for New Positions

- Goal: Find the control mesh vertex positions, x (a column vector of 3D points), such that the position of the vertices in the limit match the input vertices, b (also a column vector of points)
- Use Least Squares to solve

$$
\mathbf{A} x=b
$$

where A is a square matrix with the interpolation rules and connectivity of the mesh

- See paper for extension to match limit normals

Questions?

- Fairing: an additional part or structure added to an aircraft, tractor-trailer, etc. to smooth the outline and thus reduce drag
- Subdivide initial resolution twice so that all constrained vertex positions are independent $\quad \begin{aligned} & \text { Frared interpolating mesh. Motomit row. Corresponding } \\ & \text { Catmull-Clark surfaces. } \\ & \text { Interpolation introduces wiggles }\end{aligned}$ which are emomed by fairing.

Questions on Homework?

- What's an illegal edge collapse?

- To be legal, the ring of vertex neighbors must be unique (have no duplicates)!

Reading for Friday ($1 / 30$)

- "Deformation Constraints in a Mass-Spring Model to Describe Rigid Cloth Behavior", Provot, 1995.

