Programmable GPUS
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* Modern Graphics Hardware

* Cg Programming Language

* Gouraud Shading vs. Phong Normal
Interpolation

* Bump, Displacement, & Environment Mapping

Modern Graphics Hardware

 High performance through
— Parallelism
— Specialization
— No data dependency data parallelism
— Efficient pre-fetching
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Programmable Graphics Hardware

* Geometry and pixel (fragment) stage
become programmable
— Elaborate appearance

— More and more general-purpose
computation (GPU hacking)
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Modern Graphics Hardware

* 2005
— About 4-6 geometry units
— About 16 fragment units
— Deep pipeline (~800 stages)

— 600 million vertices/second
— 6 billion texels/second

* NVIDIA GeForce 9 (Feb 2008)
— ~1 TFLOPS
— 32/64 stream processors
— 512 MB/1GB memory

* ATI Radeon R700 (2008?)

— 480 stream processing units
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Emerging Languages

* Inspired by Shade Trees [Cook 1984] &
Renderman Shading Language:
— RTSL [Stanford 2001] — real-time shading language
— Cg [NVIDIA 2003] — C for graphics
— HLSL [Microsoft 2003] — Direct X
— GLSL [OpenGL ARB 2004] — OpenGL 2.0

* CUDA [NVIDIA 2007] — language for general
purpose GPU computing

Cg Design Goals

: “Cg: A system for programming graphics
* Ease Of programming hardware in a C-like language”

« Portability Mark et al. SIGGRAPH 2003
» Complete support for hardware functionality
* Performance

» Minimal interference with application data

* Ease of adoption

+ Extensibility for future hardware

* Support for non-shading uses of the GPU

Cg Design

» Cg was designed as a “hardware-focused
general-purpose language rather than a domain-
specific shading language”

» Multi-program model for Cg to match hardware:
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Figure 2: Current graphics architectures (DX9-class archi )
include programmable floating-point vertex and fragment proces-
sors.

“Cg: A system for programming graphics
hardware in a C-like language”
Mark et al. SIGGRAPH 2003

Cg Design

» Hardware is changing rapidly...
no single standard
* Specify “profile” for each hardware
— May omit support of some language capabilities
(e.g., texture lookup in vertex processor)
 Use hardware virtualization or emulation?

— “Performance would be so poor it would
be worthless for most applications”

— Well, it might be ok for general purpose
programming (not real-time graphics)

Cg compiler vs. GPU assembly

* Can inspect the assembly language produced by
Cg compiler and perform additional
optimizations by hand

— Generally once development is complete
(& output is correct)

— Using Cg is easier than writing GPU
assembly from scratch




(Typical) Language Design Issues

» Parameter binding

Call by reference vs. call by value

» Data types: 32 bit float, 16 bit float, 12 bit fixed
& type-promotion (aim for performance)

* Specialized arrays or general-purpose arrays
— float4 x VvS. float x[4]

* Indirect addressing/pointers (not allowed...)

» Recursion (not allowed...)

Data flow in Cg

input/output through
vertex position & texture

\foordinates
void simpleTransform (float4 obi€ctPosition : * POSITION,
color : COLOR,
atd decalCoord : TEXCOORDO,

» Sample vertex program:

out float4 clipPosition : POSITION,
out float4 oColor : COLOR,
infrequently . out floatd oDécalCoord : TEXCOORDO,
. uniform  float brightness,
Changlng uniform  float4x4 modelViewProjection)
state variables
clipPosition = mul (modelViewProjection, objectPosition);

oColor = brightness * color;
oDecalCoord = decalCoord;

}
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Remember Gouraud Shading?

* Instead of shading with the normal of the triangle,
shade the vertices with the average normal and
interpolate the color across each face
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1llusion of a smooth
surface with smoothly
varying normals

Phong Normal Interpolation o hone shaine)

* Interpolate the average vertex normals across
the face and compute per-pixel shading
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Must be
renormalized

Bump Mapping

» Use textures to alter the surface normal
— Does not change the actual shape of the surface

— Just shaded as if it were a different shape

Sphere w/Diffuse Texture Swirly Bump Map Sphere w/Diffuse Texture & Bump Map




Bump Mapping

 Treat the texture as a single-valued height function

* Compute the normal from the partial derivatives in the
texture

Another Bump Map Example

Bump Map

Gyllndesw/Diffuse Texture HMap) Cylinder w/Texture Map & Bump Map

What's Missing?

* There are no bumps on
the silhouette of a
bump-mapped object

* Bump maps
don’t allow
self-occlusion
or self-shadowing

Displacement Mapping

» Use the texture map to actually move the surface point

» The geometry must be displaced before visibility is determined

Displacement Mapping

Image from:

Geometry Caching for
Ray-Tracing Displacement Maps
EGRW 1996
Matt Pharr and Pat Hanrahan

note the detailed shadows
cast by the stones

Displacement Mapping

Ken Musgrave




Environment Maps

* We can simulate reflections by using the direction of the reflected
ray to index a spherical texture map at "infinity".

* Assumes that all reflected rays
begin from the same point.
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Questions?

Image by Henrik Wann Jensen
Environment map by Paul Debevec

What's the Best Chart?
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Texture Maps for Illumination

» Also called "Light Maps"
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Reading for Today:

Refraction”,
SIGGRAPH 2005

Chris Wyman, o 0 o
"An Approximate

Image-Space

Approach for

Interactive




Reading for Tuesday (3/24)

"Efficient BRDF Importance Sampling Using a Factored Representation”
Lawrence, Rusinkiewicz, & Ramamoorthi, SIGGRAPH 2004

1200
Samples/Pixel

Traditional importance function Lawrence et al.




