Programmable GPUS

Last Time:

Inve " approach "Forward-Mapping” approach 4 /
Modeling to Computer Graphics \
Transformations e e e
* %
Illumination Jecan }' J\:
P v d

(Shading)

\
;

TN

Viewing Transformation

(Perspective / Orthographic)| e GraphiCS Pipeline

Clipping . Cllpplng

Projection * Rasterization C /

(to Screen Space)

Scan Conversion (x2,y2)

(Rasterization)
Visibility / Display

3y

Today

* Modern Graphics Hardware

* Cg Programming Language

* Gouraud Shading vs. Phong Normal
Interpolation

* Bump, Displacement, & Environment Mapping

Modern Graphics Hardware

 High performance through
— Parallelism
— Specialization
— No data dependency data parallelism
— Efficient pre-fetching

G Geometry

Rasterization

H=zl{o]

task

Texture parallelism

XEEE
EEORE

Fragment

-

Display

Programmable Graphics Hardware

* Geometry and pixel (fragment) stage
become programmable
— Elaborate appearance

— More and more general-purpose
computation (GPU hacking)

Bl 5 L ET b1

Modern Graphics Hardware

* 2005
— About 4-6 geometry units
— About 16 fragment units
— Deep pipeline (~800 stages)

— 600 million vertices/second
— 6 billion texels/second

* NVIDIA GeForce 9 (Feb 2008)
— ~1 TFLOPS
— 32/64 stream processors
— 512 MB/1GB memory

* ATI Radeon R700 (2008?)

— 480 stream processing units

Today

* Modern Graphics Hardware

* Cg Programming Language

* Gouraud Shading vs. Phong Normal
Interpolation

* Bump, Displacement, & Environment Mapping

Emerging Languages

* Inspired by Shade Trees [Cook 1984] &
Renderman Shading Language:
— RTSL [Stanford 2001] — real-time shading language
— Cg [NVIDIA 2003] — C for graphics
— HLSL [Microsoft 2003] — Direct X
— GLSL [OpenGL ARB 2004] — OpenGL 2.0

* CUDA [NVIDIA 2007] — language for general
purpose GPU computing

Cg Design Goals

: “Cg: A system for programming graphics
* Ease Of programming hardware in a C-like language”

« Portability Mark et al. SIGGRAPH 2003
» Complete support for hardware functionality
* Performance

» Minimal interference with application data

* Ease of adoption

+ Extensibility for future hardware

* Support for non-shading uses of the GPU

Cg Design

» Cg was designed as a “hardware-focused
general-purpose language rather than a domain-
specific shading language”

» Multi-program model for Cg to match hardware:

Primitive
Assembly and
Rasterization

Framebuffer
Operations and [>
Storage

Per-Vertex
Operations

Per-Fragment

[\
/| Operations

u D)

Programmable Programmable

u

Figure 2: Current graphics architectures (DX9-class archi)
include programmable floating-point vertex and fragment proces-
sors.

“Cg: A system for programming graphics
hardware in a C-like language”
Mark et al. SIGGRAPH 2003

Cg Design

» Hardware is changing rapidly...
no single standard
* Specify “profile” for each hardware
— May omit support of some language capabilities
(e.g., texture lookup in vertex processor)
 Use hardware virtualization or emulation?

— “Performance would be so poor it would
be worthless for most applications”

— Well, it might be ok for general purpose
programming (not real-time graphics)

Cg compiler vs. GPU assembly

* Can inspect the assembly language produced by
Cg compiler and perform additional
optimizations by hand

— Generally once development is complete
(& output is correct)

— Using Cg is easier than writing GPU
assembly from scratch

(Typical) Language Design Issues

» Parameter binding

Call by reference vs. call by value

» Data types: 32 bit float, 16 bit float, 12 bit fixed
& type-promotion (aim for performance)

* Specialized arrays or general-purpose arrays
— float4 x VvS. float x[4]

* Indirect addressing/pointers (not allowed...)

» Recursion (not allowed...)

Data flow in Cg

input/output through
vertex position & texture

\foordinates
void simpleTransform (float4 obi€ctPosition : * POSITION,
color : COLOR,
atd decalCoord : TEXCOORDO,

» Sample vertex program:

out float4 clipPosition : POSITION,
out float4 oColor : COLOR,
infrequently . out floatd oDécalCoord : TEXCOORDO,
. uniform float brightness,
Changlng uniform float4x4 modelViewProjection)
state variables
clipPosition = mul (modelViewProjection, objectPosition);

oColor = brightness * color;
oDecalCoord = decalCoord;

}

Today

* Modern Graphics Hardware

* Cg Programming Language

* Gouraud Shading vs. Phong Normal
Interpolation

¢ Bump, Displacement, & Environment Mapping

Remember Gouraud Shading?

* Instead of shading with the normal of the triangle,
shade the vertices with the average normal and
interpolate the color across each face

W

1llusion of a smooth
surface with smoothly
varying normals

Phong Normal Interpolation o hone shaine)

* Interpolate the average vertex normals across
the face and compute per-pixel shading

~N

Must be
renormalized

Bump Mapping

» Use textures to alter the surface normal
— Does not change the actual shape of the surface

— Just shaded as if it were a different shape

Sphere w/Diffuse Texture Swirly Bump Map Sphere w/Diffuse Texture & Bump Map

Bump Mapping

 Treat the texture as a single-valued height function

* Compute the normal from the partial derivatives in the
texture

Another Bump Map Example

Bump Map

Gyllndesw/Diffuse Texture HMap) Cylinder w/Texture Map & Bump Map

What's Missing?

* There are no bumps on
the silhouette of a
bump-mapped object

* Bump maps
don’t allow
self-occlusion
or self-shadowing

Displacement Mapping

» Use the texture map to actually move the surface point

» The geometry must be displaced before visibility is determined

Displacement Mapping

Image from:

Geometry Caching for
Ray-Tracing Displacement Maps
EGRW 1996
Matt Pharr and Pat Hanrahan

note the detailed shadows
cast by the stones

Displacement Mapping

Ken Musgrave

Environment Maps

* We can simulate reflections by using the direction of the reflected
ray to index a spherical texture map at "infinity".

* Assumes that all reflected rays
begin from the same point.

View Point

Enviranment map
ona sphere

Object

Terminator II

Questions?

Image by Henrik Wann Jensen
Environment map by Paul Debevec

What's the Best Chart?

Lattitude Map

Box Map BRSNS
—_— l&
=y W RS 24 ,’v,“

Texture Maps for Illumination

» Also called "Light Maps"

T]

Quake

Reading for Today:

Refraction”,
SIGGRAPH 2005

Chris Wyman, o 0 o
"An Approximate

Image-Space

Approach for

Interactive

Reading for Tuesday (3/24)

"Efficient BRDF Importance Sampling Using a Factored Representation”
Lawrence, Rusinkiewicz, & Ramamoorthi, SIGGRAPH 2004

1200
Samples/Pixel

Traditional importance function Lawrence et al.

