
PATH TRACING: A NON-BIASED SOLUTION TO THE

RENDERING EQUATION

ROBERT CARR AND BYRON HULCHER

Abstract. In this paper we detail the implementation of a path tracing ren-
derer, providing a non-biased solution to the rendering equation. Path tracing
is an algorithm, which in attempting to model the behavior of light as closely
as possible, accurately captures e�ects such as: Caustics, Soft Shadows, and
Ambient Occlusion. The algorithm may be extended with techniques from
distribution ray tracing in order to simulate e�ects such as glossy re�ections,
depth of �eld, and motion blur. In this paper we detail a practical implemen-
tation of a C++ path tracer.

Part 1. Background

Introduction

Rendering techniques may be largely divided in to two categories: Real time
non-photorealistic algorithms (such as scanline type approaches), and photorealistic
methods attempting to accurately simulate the transport of light.

Photorealistic rendering methods are largely described by the ray tracing cate-
gory of algorithms, introduced in Whitted, 1980[8]. In nature light is emitted from

Date: Mon, May 10. 2009.
Key words and phrases. Path Tracing, Rendering Equation, Ray Tracing.

Figure 0.1. Image produced by path tracer illustrating caustic e�ects.

1

PATH TRACING: A NON-BIASED SOLUTION TO THE RENDERING EQUATION 2

Figure 0.2. Comparison of path and ray traced images, note the
caustic e�ects present in the path traced result.

a light source, and eventually through a series of surface interactions (absorption,
re�ection, refraction, or �uorescence) may reach the a viewer. Ray tracing approx-
imates this interaction by generating rays from the eye, to each pixel, and �nding
which object we intersect. Then by using object properties, the shading at that
point may be determined. The �genius� in the algorithm, is perhaps it's recursive
nature, allowing intersections to spawn re�ection, refraction, or shadow rays, in
order to model some global e�ects. Ray tracing, while able to create very realistic
images, fails to capture many non local e�ects, such as: Caustics, and Color Bleed-
ing. Furthermore, while ray tracing may simulate e�ects such as soft shadows[1],
we are perhaps now begining to deviate from our goal of photorealism.

The Rendering Equation

The rendering equation refers to an integral equation for computing the radiance
at a point from a certain direction. The rendering equation was introduced to
the �eld of computer graphics in Kajiya's 1986 SIGRAPH paper[4]. Given in the
following form:

L0(x, ω, λ, t) = Le(x, ω, λ, t) +
ˆ

Ω

fr(x, ω′, ω, λ, t)Li(x, ω′, λ, t)(−ω′ · n)dω′

While recent to computer graphics, the physical basis for the equation is rel-
atively simple, and based on the law of conservation of energy. We say that the
radiance at a point viewed from a particular direction, is the sum of the emitted
light, and the re�ected light, where the re�ected light is the sum of all incoming
light, shaded by the surface properties, and multiplied by the cosine of the incident
angle.

True photorealism is approached when solving, or closely approximating the
rendering equation. Such an approach will allow us to accurately capture global
illumination e�ects based on the interaction of di�use surfaces, an element missed
in the classical ray tracing algorithm. The most popular approach (preferred for
performance) is based on �nite element methods, and is referred to as the radiosity
algorithm[3]. This is often used to supplement an existing ray tracerIn this paper
however, we intend to explore the Monte Carlo methods of solution, perhaps best
characterized by the path tracing algorithm.

PATH TRACING: A NON-BIASED SOLUTION TO THE RENDERING EQUATION 3

Figure 0.3. Ray and Path traced renderings of the Cornell box.
Note the color bleeding e�ects visible in the path traced rendering.
This e�ect requires modelling of the interaction of light from light
sources between di�use objects.

Path Tracing

The path tracing algorithm is described in it's earliest form, in Kajiya's 1986
paper on The Rendering Equation[4], and provides a Monte Carlo method of solving
the Rendering Equation. Path tracing operates in a similar manner to ray tracing,
however in fact traces the entire path of light rays: From the camera to a light
source. It is important to distinguish this from the ray tracing approach. In ray
tracing, upon intersection with a di�use surface, lights are directly sampled in
order to determine shading. In path tracing, we spawn a random ray within the
hemisphere of the object, and trace until we hit a light. In general it is quite
unlikely that a path will intersect a light, and so we continue to re�ne our image
by averaging multiple image samples. This is perhaps the curse of path tracing, in
that most traced paths do not contribute to our rendering, and we must use a large
number of samples to obtain a suitably noise free image.

Path tracing however, has many advantages to other rendering algorithms as
well, this can be demonstrated by considering the kinds of paths that certain ray
tracing techniques, using a convenient notation proposed by Peter Shirley (can't
�nd original citation). We will describe components of paths as follows:

E: the eye.
L: the light.
D: di�use interaction
G: glossy re�ection
S: specular re�ection or refraction

Then we can describe the paths generated by algorithms using a regular expression
notation:

Ray Casting Recursive Ray Tracing Radiosity Path Tracing

E(D|G)L E[S∗](D|G)L ED∗L E[(D|G|S)+(D|G)]L
We can see then for example, that while recursive ray tracing will trace paths

of any length, all must begin with a mirror re�ection or refraction. Furthermore
consider a path of the form E(D|G)S∗L, describing the paths which lead to caustic

PATH TRACING: A NON-BIASED SOLUTION TO THE RENDERING EQUATION 4

Figure 0.4. Comparison of renderings at: 100, 250, 1000, 2500,
5000 and 10000 samples.

e�ects. Even radiosity fails to generate these e�ects1. Path tracing is shown to have
an unbiased nature in Kajiya, that is to say as the number of samples approaches
in�nity, the solution converges correctly. In our experience, while an image may
become quickly recognizable, it may take many thousand samples to achieve an
acceptably low level of noise.

Part 2. Basic Implementation

Scene Definition and data structures

Before implementing a path tracer, we must �rst have a way of de�ning what we
wish to render. Our implementation contains a RayTracer object, which contains
a mesh composed of primitives. Primitives are assigned materials, which describes
the di�use, re�ective, and emittive colors of the object, along with the index of
refraction. Primitives implement an Primitive::Intersectmethod, which is
used to determine intersection of a ray with primitive, and if applicable return hit
information. For primitives such as spheres, this is a simple matter of substiting
equations and is described in more detail in the recursive ray tracing paper[8].

Rendering Loop

The overall rendering loop of our tracer, is described in pseudo code as follows:

de f TracePixe l (i , j) :

r = generate_ray (i , j)

r e turn TracePath (r)

de f render () :

samples [width∗ he ight] = {0 ,}

f o r number_of_samples :

1Though this may be approximated using techniques such as Photon Mapping as in �Global
Illimunation Using Photon Maps�, Henrik Wann Jensen, 1996.

PATH TRACING: A NON-BIASED SOLUTION TO THE RENDERING EQUATION 5

f o r i = 0 to he ight :

f o r j = 0 to width :

samples [width∗ i+j]+=

TracePath (i , j)/ number_of_samples

save_samples () ;

In addition, we keep track of a running average of time per sample in order to
compute progress estimates.

Diffuse Interactions

To implement the logic of path tracing, we will start with di�use interactions,
the algorithm dictates that when impacting a di�use surface, we emit a ray in a
random direction constrained within the hemisphere of our surface normal.

This may be described as follows:

de f CastRay (ray) :

I n t e r s e c t ray with scene p r im i t i v e s

and return h i t in fo rmat ion f o r

near e s t i n t e r s e c t i o n .

de f TracePath (ray , bounce_count) :

(h i t , mate r i a l) = CastRay (ray)

answer = Color (0 , 0 , 0)

i f h i t == nu l l :

r e turn answer

i f mate r i a l . emittance . Length () > 0 :

re turn emittance ;

i f mate r i a l . d i f f u s e . Length () > 0 :

d i r = RandomDirectionInHemisphere (h i t . normal)

n = Ray(po int+d i r ∗ . 00001 , d i r)
dp = d i r . Dot3 (h i t . normal)

answer += TracePath (n , bounce_count+1)∗
mat t e r i a l . d i f f u s e ∗dp

return answer

Some points of note:

• When constructing our new ray, the slight o�set is used to avoid �oating
point error

• Incoming light is shaded according to cosine, as in the rendering equation.

Already we can begin to create some renderings:

Mirror Reflections

To calculate the re�ected ray ~R from the intersection of a ray (with incident

direction ~V) with a surface (with normal at intersection ~N), we use the following
formula:

~R = ~V − 2(~V · ~N) ~N

PATH TRACING: A NON-BIASED SOLUTION TO THE RENDERING EQUATION 6

Figure 0.5. A rendering of the Cornell Box at 1000 samples, note
the e�ects from di�use surface interaction.

Figure 0.6. A Path Traced re�ective sphere, and an example of
�oating point error caused by not using an epsilon.

In the framework of our code this looks something like the following addition to
our TracePath function.

i f mate r i a l . r e f l e c t i o n . Length () > 0 :

d i r = ray . d i r e c t i o n − (2∗ ray . d i r e c t i o n . dot (h i t . normal))∗ h i t . normal

n = Ray(po int+d i r ∗ . 00001 , d i r)
answer += TracePath (n , bounce_count+1)∗mate r i a l . r e f l e c t i o n

We can now produce a rendering demonstrating our results:

Refraction

Refraction refers to the e�ect of a change in direction in wave due to a change
in speed, perhaps most commonly observed in light passing from one medium to a
second. The bending of the rays depends on a property of the two mediums referred
to as the refractive index, de�ned for a medium m as:

η = c/cm

PATH TRACING: A NON-BIASED SOLUTION TO THE RENDERING EQUATION 7

Figure 0.7. A refractive sphere

with c denoting the speed of light in a vacuum, and cm denoting the speed of light
in m. For example, air has a refractive index of approximately 1.0003, while the
human cornea has an index of 1.38[6]. For a detailed discussion of the mathematics,
we found the paper �Re�ections and Refractions in Ray Tracing�[2] to provide a
satisfactory description. To implement this in our TracePath, we must �rst extend
the function with an additional argument: last_index, or the index of the mate-
rial which a spawned ray will travel through, we give this a default value of 1.0003
for air.

To compute the correct normal, it is important to di�erentiate from intersections
entering an object from another material, and intersections originating from inside
the same object, we do this by having our intersection routine return an integer
value: 0 for miss, 1 for hit, and -1 for hit inside the primitive.

Implementation in our TracePath function is as follows:

i f (h i t . mate r i a l . r e f r a c t i o n != 0) :

index = h i t . mate r i a l . r e f r a c t i o n

n = last_index / index

N = h i t . normal ∗ i n t e r s e c t ;

c o s I = −N. Dot3 (ray . d i r e c t i o n)

cosT2 = 1.0−n∗n∗(1.0− co s I ∗ co s I)
i f cosT2 > 0 . 0 :

d i r = (n∗ ray . d i r e c t i o n)+(n∗ cosI−s q r t (cosT2))∗N
n = Ray(po int+d i r ∗ . 00001 , d i r)
answer += TracePath (n , bounce_count+1, index)

An example image demonstrating refraction:

Part 3. Implementation Improvements

Russian Roulette

In order to terminate paths which are likely to never hit lights, we implement a
Russian Roulette, which introduces a random chance of killing paths with length

PATH TRACING: A NON-BIASED SOLUTION TO THE RENDERING EQUATION 8

Figure 0.8. A refractive sphere with Beer's Law

greater than a variable number of bounces, this looks something like the following
at the beginning of our TracePath

i f ((bounce_count > max_bounces)

&& (RandomDouble () < max(d i f f u s e . r ,

d i f f u s e . g , d i f f u s e . b) :

r e turn Color (0 , 0 , 0)

d i f f u s e = d i f f u s e ∗ 1/p

Beers Law

In fact, our prior implementation of refraction was somewhat incomplete. To
accurately shade our materials, we must respect Beer's Law, which states that the
e�ect of a colored medium is stronger over longer distances. This involves changing
our refraction calculation as:

r co l , d i s t anc e = TracePath (n , bounce_count+1, index)

absorb = d i f f u s e ∗0.15∗− d i s t ance

transparency = Color (exp (absorb . x) , exp (absorb . y) , exp (absorb . z)

Implementing this dramatically improves results as shown in Figure 0.8.

Ambient Lighting

During testing, we often found it was frustrating to slowly wait for images to
converge, and so we implemented an ambient lighting term, as follows in TracePath:

i f i n t e r s e c t == f a l s e :

i f bounce_count >= 1 :

re turn ambient_light

e l s e :

r e turn Color (0 , 0 , 0)

PATH TRACING: A NON-BIASED SOLUTION TO THE RENDERING EQUATION 9

Figure 0.9. Re�ective ring at 50 samples with and without am-
bient lighting term.

Figure 0.10. Rendering of re�ective ring at 200 samples with and
without hybrid rendering.

While drastically reducing the quality of images at higher noise ratios, it can be
used to obtain quickly converging results while testing, as in Figure 0.9.

Hybrid Tracing

For another attempt at improving convergence, we implemented a hybrid trac-
ing method, which generates a �nal image by averaging a recursively ray traced
image, and a path traced image. This allows us to quickly create ray traced images
preserving some global e�ects:

Distribution Ray Tracing Effects

The 1984 paper �Distributed Ray Tracing� describes a re�nement of the ray
tracing algorithm allowing it so simulate soft phenomena[1]. Essentially by over-
sampling various ray parameters, various e�ects are described.

Glossy Re�ections. In the real world, objects rarely re�ect in perfect mirror
fashion, consider for example the surface of a matte-poster, likely to give a very
blurry re�ection. This is the material property referred to as: Gloss. To simulate
gloss as described by Cook, we scatter a number of re�ection samples in a cone
around the mirror direction to compute our re�ected color. Each material is given
a gloss property between 0 and 1, indicating the degree of scattering (with 0 being
mirror re�ection, and 1 being in fact a di�use surface (with enough samples...).

Additional Distribution Ray Tracing E�ects. Many other e�ects can be im-
plemented with a similar technique:

• Depth of �eld, by sampling the ray starting positions over a lens.
• Antialiasing, by multisampling within pixels.

PATH TRACING: A NON-BIASED SOLUTION TO THE RENDERING EQUATION 10

Figure 0.11. Cornell box, containing a sphere with a gloss coef-
fecient of .3

• Motion blur, by multisampling over time.

However, we ran out of time to complete these additional e�ects for our project.

Parallel Rendering

With recent versions of the g++ compiler, path tracing samples will automatically
be computed in paralllel with our implementation, this is achieved via the use of
the OpenMP framework, with the following pragma annotating our outer rendering
loop:

#pragma omp p a r a l l e l f o r schedu le (s t a t i c)

Near linear speedud with number of processors is observed.

Part 4. Implementation Notes

Future Possibilities

Despite the core simplicity of the path tracing algorithm, there is a lot left that
we could implement. Several algorithms based on path tracing exist, designed to
improve the convergence time including bidirectional path-tracing[5], an algorithm
which uses a combination of eye->light and light->eye rays to accelerate conver-
gence, and Metropolis light transport[7], an algorithm which perturbs previously
computed paths to improve convergence.

A clear gap in our path tracer is proper support of distribution e�ects, such as
depth of �eld and antialiasing. With the long render times however, we just ran out
of time to properly implement and test these features. I believe that multisample
antialiasing would drastically improve the resulting image quality.

Several �conveniences� could be added to the codebase, such as an iterative
preview of the image up to our current sample.

References

[1] Porter Cook and Carpenter. Distributed ray tracing. 1984.
[2] Bram de Greve. Re�ections and refractions in ray tracing. 2004.
[3] Goral et al. Modeling the interaction of light between di�use surfaces. 1984.

PATH TRACING: A NON-BIASED SOLUTION TO THE RENDERING EQUATION 11

[4] Kajiya. The rendering equation. 1986.
[5] Eric P. Lafortune. Bi-directional path tracing. 1993.
[6] robinwood.com. Refractive index list of substances.
[7] Eric Veah and Leonidas J. Guibas. Metropolis light transport. 1997.
[8] Turned Whitted. An improved illumination model for shaded display. 1980.

E-mail address: racarr@gnome.org, byronhulcher@gmail.com

