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Figure 1: Two magnetic dipoles

1 Summary

The purpose of this project is to simulate electromagnetic
fields in free space. While software exists to simulate these
fields (such as COMSOL, a finite element software package),
it can be expensive (both financially and temporally) to use.
In addition, there is little support for creating quick-and-
dirty scenes in the experience of the author.

One of the most useful components of the simulation is
visualization of the electric and magnetic fields and the re-
sulting forces, similar to the visualization of velocities and
forces in the fluid and cloth simulations from earlier in the
semester.

The majority of the physical computations in the simu-
lations will use Maxwell’s equations, largely gathered from
[2]. [3] was used heavily for some of the approximations for
finite wires, as was [1].

The inclusion of gravity in the physical model is a possi-
bility, but will probably be an afterthought, as gravitational

forces are many orders of magnitude weaker than electro-
magnetic forces.

2 Underlying Mathematics

At its core, my project is based on the Maxwell’s equations:I
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As elegant as they appear in their simplicity, these in-
tegrals are extremely difficult to solve analytically in ge-
ometries without certain symmetries (loops, straight lines,
points, etc.).

However, for many geometries, the equations for B and E
can be easily calculated.

2.1 Point Charge

For a point charge q at displacement r and moving at velocity
v,
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2.2 Conducting Sphere

For a conducting sphere of radius R, charge Q, and displace-
ment r,
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2.3 Uniform Spherical Charge

For a uniform charge distribution Q of radius R and dis-
placement r,
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2.4 Long Straight Wire

Long, straight wire axisymettric to ` and orthogonal to r̂
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E = 0

2.5 Magnetic Dipole

For a magnetic dipole with moment µ and displacement r
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2.6 Solenoid

For an infinitely long ideal solenoid axisymmetric with ẑ and
orthogonal to r with current I, n turns per length,

B = µ0nIẑ

E = 0

3 Technical Approach

The implimentation of the electromagnetics simulator was
a near-complete rewrite of the fluid and cloth simulators
encountered earlier in the course, but borrowed heavily from
the data structures. However, the entire simulation followed
the steps in Algorithm 1 for animation:

The core features were the behavior of the bodies them-
selves and the visualizations of the electric and magnetic
fields. Experience played a large part in this: does the mag-
netic field around that wire look like it should? What about
that solenoid? Many of the simpler geometries elicit recog-
nizable shapes.

4 Future Work

There is much to be done to improve the system. There is
no support whatsoever for physical objects that don’t phase
through each other. Collision detection is non-existent.
There is no gravity, although this may be benificial in that
there are no forces interfering with the electromagnetic in-
teractions.

There is also much to be done in better approximating
the actual behavior of electromagnetic components. There is
currently no support for real circuits, and thus the complex
signals that go along with that and can in theory greatly
influence the electromagnetic fields around them. For this
to work properly, a very thorough simulation would probably
need to be done with finite elements, which as it happens,
is what I would not like to happen with it.

Overall, the project was a success, although many of the
(40+?) hours were spent debugging the complex interactions
between all of the data structures, which I expected. It
remains a cool toy to tinker around with, as ideas for new
types of geometries come to mind. One idea is a projectile
railgun.

Algorithm 1 Update the positions of the particles and the
values of the magnetic and electric fields for each of the cells,
then draw them
Require: particles are the particles in the scene
Require: t is the timestep
Require: cells are the cells in the scene

for all p in particles do
if p is fixed then
p(acceleration)⇐ (0, 0, 0)

else
position⇐ p(location)
B at position⇐ is the magnetic field at position due
to the contributions from all particles
E at position⇐ is the magnetic field at position due
to the contributions from all particles
bfield⇐ B at position
efield⇐ E at position
force⇐ q(E + v ×B)
if p is a magnetic dipole then
force⇐ force+ the force due to all other dipoles

end if
end if
p(acceleration)⇐ force/p(mass)

end for
for all p in particles do
p(velocity)⇐ p(velocity) + p(acceleration)× t
p(position)⇐ p(position) + p(velocity)× t

end for
for all cell in cells do

update the bfield and magnetic field at the location of
cell

end for
draw(particles)

Figure 2: Moving charges, one of which has been ejected
from the nest.



Figure 3: Moving charges
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