
Interactive Tornado Simulation
Advanced Computer Graphics 2010 Final Project

Nick Coppola and Lincoln Tahara

Figure 1 - Bunnies caught in the tornado

1 – Abstract
 We present a method to quickly and
efficiently simulate a tornado and its
interaction with various objects. This
simulation is designed to run in real-time.
As a result, the interaction between the
tornado and the objects seen in the
simulation will not be an exact
representation. Despite that, this system
provides a good and convincing depiction of
a tornado.

2 – Introduction
 This system was created mainly for
its novelty value, rather than a perfectly
accurate and realistic representation of a
tornado. That being said, a real-time and
interactive representation became an
option.

3 – Background
 An actual tornado would not be
terribly difficult to implement, but
simulating it would require large amounts
of resources which are not readily available.

A full Navier-Stokes implementation [1]
could easily be adapted to simulate a
tornado. This would ensure that the
simulation would remain accurate and it
would reduce the amount of attention
needed for the forces (only a few constant
forces would be needed).
 Of course, in order to be able to see
the tornado, we would need particles. Most
often, a tornado is only visible because of
the dust and debris it picks up. This can be
represented accurately through the use of
particles; the more particles the better. The
problem is the number of particles is limited
by the bandwidth between the GPU and
CPU, limiting us to less than ten thousand
particles in our simulation. However, using
the Million Particle System [2] we can get
around this bandwidth by storing
information in textures, allowing us to
transport more data faster.
 Since we needed a real-time
simulation, a full Navier-Stokes
implementation was out of the question, at
least with our current hardware. We then
settled for a particle system, instead, that

would produce a tornado. This particle
system consisted of a force field, a velocity
field, and rules for spawning and killing
particles.

4.1 – Tornado
a) Force and Velocity
 The force and velocity fields are
both based on the natural log function:

 ()

which yields the following graph:

The force is strongest towards the
center of the tornado, and non-existent
within the eye of the tornado. As the
particles move further away from the
center, the forces acting upon them
decrease in strength. In order to achieve
our desired funnel shape, we exponentially
decreased the rate at which the forces
decay as we move further away from the
eye.

The logarithm function finds us the
fraction of the force (y) that will act on a
given particle given the distance (x) from
the center. But first, we need to perform a
few transformations in order to get the
desired output.

We translate the function to the left
one unit so that we get an intersection at
the origin:

 ()

 Now, the difference between y = 2
and our logarithm function will give us the
proper force decay at the top of the
tornado:

 ()

 c, the constant, translates the graph
vertically, allowing us to decrease or
increase the rate at which the force decays.
A value of 2 will cause the force to instantly
become 0, which we want at the base of
the tornado. We want to linearly increase
the value of c with respect to the tornado’s
height in order to complete our funnel
shape. So we get:

 Putting it all together gives us the
fraction of the force (y) acting on a given
particle:

 ()

 x = distance from the center
 heightparticle = distance from ground
 heighttornado = height of the tornado

 With the addition of a direction, our
force field will be completed. The direction
is the perpendicular clockwise direction
from the vector starting at the center and
ending at the particle location. Because

tornados have a tendency to attract
particles toward the center, we had to
adjust the force so that it would point more
towards the center, rather than being
tangent to the tornado.

b) Particles
 The particles are an integral
component to this system. The particles in
our system are broken up into three
categories: the main vortex particles, noise
particles, and object particles.

Vortex Particles
 The vortex particles provide the
visualization for the main structure of the
tornado. The particles are spawned along
the bottom of the tornado and are carried
up and around by the force field. To prevent
an excessive number of particles from being
in the system, they are killed if their net
force is zero. This set of particles alone
created a funnel shape, but it looked
unnatural. To remedy this situation, we
added noise particles.

Noise Particles
 Noise particles are spawned
randomly in any location that is affected by
the tornado’s forces above a threshold. This
way, we can achieve the chaotic look for
our tornado. These particles are affected by
gravity and disappear once they go outside
the bounding box of the tornado.

Object Particles
 The object particles represent a 3-
Dimensional object that can be rotated and
moved around by the tornado. A set of
object particles consists of seven particles:
top, bottom, left, right, front, back, and
center. We bind these particles to their
respective positions on a mesh so when the

set of particles move and rotate, the mesh
does the same.

c) Other Components
 The tornado has various parameters
which are read in from a text file. These are
height, width, strength, gravity, speed,
initial position, and the environment size.

Height/Width
 Height and width determine the size
of the tornado. Height, as the parameter
suggests, affects the height of the tornado.
The position at which the forces stop acting
on particles depends on this Width refers to
the tornado’s width at its base. The width at
the top is the square of the width at the
base. The width affects the bounding box of
the tornado, which in turn, affects what the
tornado’s forces have an impact on. In
order to simplify the system, we have no
forces, outside of gravity, act on positions
outside the bounding box.

Strength
 The strength parameter determines
the maximum force the tornado can apply.
This is the scalar that is multiplied by the
fraction and direction mentioned earlier to
obtain the force given a position. The code
relies on the user to provide a good balance
between height and strength to create a
good tornado. If the strength is too low,
relative to the height, the tornado will be
more of a gust, having little impact on the
environment. On the other hand, if the
strength is too high, we will not be able to
properly see the tornado; the particles will
move too fast.

Gravity/Speed
 Gravity refers to the only other force
acting on the system besides the tornado.
It’s pretty straight forward. In addition to

the forces, if any, imposed on a position,
there is also a downward force. Speed, is
also another simple parameter. Its only
effect on the system is how fast the tornado
moves. These values currently have no units
and are just arbitrary scales.

Other
 Initial position is where the tornado
will start. The position can never be outside
the environment. In the event that this does
happen, the tornado will be snapped back
into the environment.
 Bounding box creates the
boundaries for the environment. The
bounding box prevents the tornado and any
other object from escaping the
environment. It can be as large as the user
wishes, but never smaller than the tornado.

4.2 – Objects
Meshes
 Meshes are placed into the
simulation after being read in from an
object file (.obj). After parsing the file, the
data is stored into a series of containers:
one for faces, one for edges, and one for
vertices. Once all that is read in, the
dimensions of the bounding box for the
mesh are sent to the tornado particles
function to create a set of object particles
for the mesh.

Rotation/Translation
 The rotation and translation of the
object is based on the movement of the
object particles. Yaw, pitch, and roll
describe the angle of rotation about the x,
y, and z axes, respectively, from the object’s
initial orientation.
 The dot product of two vectors gives
us the cosine of the angle between them.
Therefore, the inverse cosine of the dot

product of two vectors gives us the angle
between them.
 For example: vector A is the vector
from the front to the back. Vector B is the
axis which we are measuring the angle
from, which in this case, is the Y-axis.

 () ⃑ ⃑⃑

 (⃑ ⃑⃑)

 After calculating the angles, we sum
up all the angles about a particular axis to
find the net rotation. We label these yaw,
pitch, and roll.

Display
 The rotation/translation function
figures out the exact position and
orientation of the object and passes the
information into the rendering function.
 Translation is easily handled by
adding the change in distance to the
vertices of the mesh prior to drawing.

Rotation is handled using the matrix
stack. Prior to drawing, the rotation is
applied. After drawing, the matrix is reset.
Doing it this way allows us to have multiple
objects on screen with different
orientations.

5 – Interactivity
 What would be the point of
rendering in real-time if the simulation was
not interactive? We offer the user various
ways to tweak the tornado to his/her liking.

Config File
 The config file, “tornado.txt”, offers
various metrics (explained previously)
which the user can adjust to change nearly
all aspects of the simulation.

Mouse

 The following describe the mouse
controls available to the user:
Left click [hold] – change the camera’s
viewing direction. The camera moves with
the tornado.
Right click [hold] – move the mouse up to
zoom out and down to zoom in.

Keyboard
 The following describe the keyboard
actions available to the user:
W – move the tornado away from the
camera.
S – move the tornado towards the camera.
A – move the tornado to the left.
D – move the tornado to the right.
G – spawn a gourd.
H – spawn a humanoid block
B – spawn a bunny.

6 – Results
 We have about three hundred
particles in the system at any given time
and it runs without lag. It takes about
fifteen simultaneous objects before a
4.0GHz processor shows any signs of
slowing the system down.

The particle system is a convincing
representation of a tornado. Though still in
the early stages, this system works well. The
pictures below show our progress over the
course of the project.
 The physics applied to the objects
are also not quite right. There is a lack of
acceleration. This is the only real bug for
now.

7 – Future Work
 There is still a lot to do before we
can call this a complete tornado simulation.
We can further refine the particles around
the tornado in order to make it look more
realistic. This is more important for the top
of the tornado and the point at which the

tornado makes contact with the surface.
Including more noise particles in those
areas would help.
 Tornados are usually accompanied
by a cloud above them. Adding a cloud
mesh right above the tornado would
probably be our next step forward.
 An actual tornado would create
winds extending much further than its
immediate vicinity. We can achieve this
effect in our simulation by adding more
residual forces surrounding the tornado. In
order to depict this, we would need more
particles. This is where the Million Particle
System [2] method would come in.
 In addition to improving the
tornado, we can also expand the
environment which it resides in. Instead of
having it be a box, we can have hills, valleys,
and such. It would also be nice to add other
environmental elements such as fire and
water to create fire whirls, water spouts,
and other interesting forms of tornadoes.
 Finally, we can improve the meshes
and their behaviors in interacting with the
tornado. Adding a light source and creating
shadows through shadow volumes would
be the first thing to do. Then we would add
textures. Lastly, we would probably
implement breakable objects.

8 – Conclusion
 We have presented our interactive
tornado simulation which runs in real-time.
The user has plenty of control over the
tornado and its basic properties. Through
particle effects and kinematics, we have
successfully created a simple tornado
simulation.
 Our tornado simulation is far from
complete, but we have provided a good
starting point. We have a basic
implementation of a tornado and its
interaction with objects.

Acknowledgements
Thanks:
Barbara Cutler for base codes and files.
Nick and Lincoln for being awesome.
Tornadoes for existing.

References
[1] Nick Foster and Dimitri Metaxas.

Realistic Animation of Liquids.

Graphical Models and Image
Processing, 58(5):471-483, 1996.

[2] Lutz Latta. Building a Million Particle
System. In Game Developers
Conference, 2004.

[3] Karl Sims. Particle Animation and
Rendering Using Data Parallel
Computation. ACM Computer Graphics
(SIGGRAPH ’90), 24(4):405-413, 1990.

Figure 2 – Tornado forces Figure 3 – Tornado forces (top view)

Figure 4 – Particles after being spawned and moved by the forces

Figure 5 – Tornado in the environment Figure 6 – Bunny mesh (colored yellow)

Figure 7 – Two gourds and three bunnies caught in the tornado (rotation not implemented)

Figure 8 – Various objects interacting with the tornado (with rotation and planar projection shadows)

