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Abstract 

We face the problem of collecting data on real 

world terrain slices with a sparse collection 

system and generating complete virtual terrain 

slices with that data. Several papers in the past 

have faced the problem of terrain generation 

over sparse data sets[2], with varying success. 

Other papers in other fields have studied the 

issues of terrain sampling, searching for more 

and more accurate methods to measure terrain 

data[1]. 

In our paper we do both: creating a collection 

device, gathering real world data, and then 

performing terrain generation techniques 

(namely ODETLAP) to fill out our final terrains. 

Data Collection 

In our solution for terrain measuring we utilize a 

custom designed GPS device to sample altitude 

data at different global coordinates. This data is 

collected using an EM-406A SiRF III GPS 

receiver, accurate to 10 m, connected to an 

Arduino microcontroller unit. The entire unit 

can be powered by a 9 volt battery. This device 

produces terrain data in a longitude latitude 

altitude format approximately 10 times a 

second and outputs it via a serial connection. 

This serial data is fed into a BlueSMiRF 

Bluetooth adapter where it is then sent via a 

Bluetooth serial connection to an Android 

wireless device. 

On the Android wireless device the data is 

averaged, and then once every second 

uploaded via a data connection to a waiting 

Java Server running on Google App Engine. 

There the data is stored in a permanent 

database, where it can be retrieved later. 

 

 

Figure 2: The collection device 

 

Analysis 

Once we have a collection of coordinates, our 

program takes over.  The program takes up to 

four arguments: a text file containing 

coordinates, the desired grid resolution, 



smoothness factor, and which axis is to be 

altitude. 

Only the text file is really required.  Grid size 

defaults to 10 unless otherwise specified, and 

smoothness factor defaults to 1.  If the fourth 

argument does not exist, it assumes the z axis is 

height.  These steps will be explained in greater 

detail below. 

The program is split into several parts 

1. Parse and store the coordinates 

2. Translate and scale the cloud near the 

origin 

3. Distribute the coordinates in a grid of 

boxes 

4. Calculate the average altitude for boxes 

that contain coordinates 

5. Loop through the grid to fill in the 

empty boxes 

6. Scale the mesh 

7. Create the obj file 

Parse and store the coordinates 

This simply runs through the text file, grabs 

each x, y, and z coordinate, and stores it in a 

vector for later use.  While this is happening, it 

also determines what the max and min of x, y, 

and z are so that they can be used for the next 

step.  Normally z will be considered altitude, 

though this can be altered via the command 

line. 

Translate and scale the cloud near the origin 

Once all of the coordinates are parsed the 

points are scaled so that all values lie between 0 

and 1. 

Distribute the coordinates in a grid of boxes 

The grid is a 2D array of Boxes.  The size is 

specified by command line.  For instance, if the 

size is 10, then the grid will contain 10 x 10 

boxes (100).  Using a coordinate’s x and y 

position they are sorted into one of these boxes 

with the following logic: 

gx = (int) ((x / maxX) * gridSize); 

gy = (int) ((y / maxY) * gridSize); 

Calculate the average altitude for boxes that 

contain coordinates 

Once the coordinates are distributed, it runs 

through each box and acquires the average 

altitude of the coordinates it contains.  Boxes 

that contain coordinates are marked 

appropriately. 

Loop through the grid to fill in the empty boxes 

This is where ODETLAP (Overdetermined 

Laplacian Partial Differential Equation) comes 

into play.  It allows us to take a grid where only 

a few points are known, and computes the 

surface over the entire grid.  The equation itself 

just involves averaging the four altitudes of a 

point’s neighbors.  In addition to this equation, 

the paper talked about a Smoothness factor R, 

which trades off accuracy and smoothness.  The 

higher the smoothing factor, the smoother the 

mesh becomes [2].  However, in our program, 

the smoothing factor is reversed (smaller = 

smoother).   This is shown later. 

We do this step inside a while loop.  In each 

iteration, it goes through the grid box by box 

and, for each box that isn’t marked, acquires 

the average altitude of its neighbors.  It does 

not take into account neighbors that haven’t 

been initialized yet.  The first run-through fills in 



the empty boxes.  The following run-throughs 

help the grid of heights reach stability.  It will 

continue to run through the while loop until the 

difference of its previous average and its new 

average is less than .000001. 

By default, boxes that are marked are not 

altered during this process.  However, if the 

user specifies a smoothness factor, than the 

following equation is applied.   

neighborAverage = smoothness * 

grid[i][j].getOriginalZ() + (1 - smoothness) * 

neighborAverage; 

getOriginalZ() is the box’s original average z, 

acquired from its coordinates.  The lower the 

smoothness factor, the more it will blend in 

with the rest of the grid. 

Once the grid is stable, we continue. 

Scale the mesh 

This involves going through the grid one more 

time and finding the new minimum and 

maximum altitudes and scaling them between 0 

and 1 

Create the obj file 

The last step involves two parts: vertices and 

faces. 

Boxes need to be assigned a number from 1 to 

the resolution size so that it can be used by the 

faces later.  This is done by making a counter 

that starts at 1, and then scanning through the 

grid, box by box.  While assigning a box its 

number, you also output the vertex to the obj 

file, in the format of “v x y z”, where x, z are 

replaced by a box’s coordinates, and y is the 

box’s average altitude (this was done so that it 

would display correctly in our renderer).   

x = i / (float) gridSize; 

z = j / (float) gridSize; 

y = grid[i][j].getAverageZ(); 

Once all of the vertices are printed, it is time to 

do the faces.  Two triangles are constructed for 

every box coordinate, except those in the last 

row and last column. 

The first triangle is “f num num+1 

num+gridSize” where num is a box’s assigned 

number, and gridSize is the resolution. 

The second triangle is “f num+1 num+gridSize+1 

num+gridSize” 

After the output file is closed, it then runs a 

system command that launches our renderer, 

using the obj file we just created.  Inside of the 

renderer, it can be viewed, subdivided, and 

given basic Gouraud shading using existing 

algorithms [3,4]. 

Result  

The run time of the program is dependent 

on the resolution of the grid, as well as the 

cut-off point for when the grid is stable 

(.000001).  There is a noticeable spike in 

execution time when running with a 

resolution of 50 (2500 boxes), and a 

resolution of 100 (10000 boxes).  Reducing 

the cut-off point fixes this problem, but 

results in a slightly less accurate mesh.   

 



 

Figure 2: Varying smoothness factors on an 

image of the ‘Approach’ in Troy, NY From the 

top left, smoothness of 1, .5, .1, .01, 0 

 

 

 

 

 

Figure 3: Three different resolutions of a 

contrived set of data, 5x5, 10x10 and 20x20 

 

 

 

Figure 4: Example showing generated 

terrain of the greater RPI Campus in Troy, 

NY 

 

 



Conclusion 

Our techniques produced viable terrain samples 

of multiple real world terrain pieces and 

allowed us a great ability to understand the 

connections between original data and results. 

By examining both our data collection methods 

and our data processing methods we were able 

to gain insights on how to improve the overall 

technique. In our test cases accuracy of data is 

important, but quantity of data is even more so. 

GPS sampling techniques can yield errors that 

drift during different times of day, as the GPS 

unit communicates with different GPS satellites. 

These errors can be reduced by having more 

accurate GPS systems, but can even more 

accurately be accounted for by simply taking 

many samples at many different times of day. 

As the density of the point cloud grows, so does 

its accuracy. Focusing on quantity of data rather 

than quality also allows for a greater number of 

cheap GPS units to be used, greatly reducing 

the cost of individual modules. 

Since data is averaged and smoothed while 

being redefined to specified resolutions in the 

post processing phase, the final results are also 

always of specified data size, regardless of the 

quantity of input data utilized. 

Future Work 

In the future our module would be extended 

upon to be able to utilize data from more 

precise GPS units, as well as switch to using a 

more robust data transfer medium, to allow for 

sampling rates greater than 1 a second over 

http, for instance UDP transmissions being 

beamed to a personally established server. 

Different collection methods could also be 

integrated into the same framework, allowing 

data transmitted from satellite or range finder 

to be uploaded and utilized in the same server 

framework. 

Our program would be extended upon to be 

able to generate non-square output, as well as 

make it so the weight of the heights inside a box 

are dependent on the distance from the center 

of the box (the closer it is, the more it 

contributes). 
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