
Terrain Mapping: Data Collection and ODETLAP

Jeff Frey

Michael Todd

Abstract

We face the problem of collecting data on real

world terrain slices with a sparse collection

system and generating complete virtual terrain

slices with that data. Several papers in the past

have faced the problem of terrain generation

over sparse data sets[2], with varying success.

Other papers in other fields have studied the

issues of terrain sampling, searching for more

and more accurate methods to measure terrain

data[1].

In our paper we do both: creating a collection

device, gathering real world data, and then

performing terrain generation techniques

(namely ODETLAP) to fill out our final terrains.

Data Collection

In our solution for terrain measuring we utilize a

custom designed GPS device to sample altitude

data at different global coordinates. This data is

collected using an EM-406A SiRF III GPS

receiver, accurate to 10 m, connected to an

Arduino microcontroller unit. The entire unit

can be powered by a 9 volt battery. This device

produces terrain data in a longitude latitude

altitude format approximately 10 times a

second and outputs it via a serial connection.

This serial data is fed into a BlueSMiRF

Bluetooth adapter where it is then sent via a

Bluetooth serial connection to an Android

wireless device.

On the Android wireless device the data is

averaged, and then once every second

uploaded via a data connection to a waiting

Java Server running on Google App Engine.

There the data is stored in a permanent

database, where it can be retrieved later.

Figure 2: The collection device

Analysis

Once we have a collection of coordinates, our

program takes over. The program takes up to

four arguments: a text file containing

coordinates, the desired grid resolution,

smoothness factor, and which axis is to be

altitude.

Only the text file is really required. Grid size

defaults to 10 unless otherwise specified, and

smoothness factor defaults to 1. If the fourth

argument does not exist, it assumes the z axis is

height. These steps will be explained in greater

detail below.

The program is split into several parts

1. Parse and store the coordinates

2. Translate and scale the cloud near the

origin

3. Distribute the coordinates in a grid of

boxes

4. Calculate the average altitude for boxes

that contain coordinates

5. Loop through the grid to fill in the

empty boxes

6. Scale the mesh

7. Create the obj file

Parse and store the coordinates

This simply runs through the text file, grabs

each x, y, and z coordinate, and stores it in a

vector for later use. While this is happening, it

also determines what the max and min of x, y,

and z are so that they can be used for the next

step. Normally z will be considered altitude,

though this can be altered via the command

line.

Translate and scale the cloud near the origin

Once all of the coordinates are parsed the

points are scaled so that all values lie between 0

and 1.

Distribute the coordinates in a grid of boxes

The grid is a 2D array of Boxes. The size is

specified by command line. For instance, if the

size is 10, then the grid will contain 10 x 10

boxes (100). Using a coordinate’s x and y

position they are sorted into one of these boxes

with the following logic:

gx = (int) ((x / maxX) * gridSize);

gy = (int) ((y / maxY) * gridSize);

Calculate the average altitude for boxes that

contain coordinates

Once the coordinates are distributed, it runs

through each box and acquires the average

altitude of the coordinates it contains. Boxes

that contain coordinates are marked

appropriately.

Loop through the grid to fill in the empty boxes

This is where ODETLAP (Overdetermined

Laplacian Partial Differential Equation) comes

into play. It allows us to take a grid where only

a few points are known, and computes the

surface over the entire grid. The equation itself

just involves averaging the four altitudes of a

point’s neighbors. In addition to this equation,

the paper talked about a Smoothness factor R,

which trades off accuracy and smoothness. The

higher the smoothing factor, the smoother the

mesh becomes [2]. However, in our program,

the smoothing factor is reversed (smaller =

smoother). This is shown later.

We do this step inside a while loop. In each

iteration, it goes through the grid box by box

and, for each box that isn’t marked, acquires

the average altitude of its neighbors. It does

not take into account neighbors that haven’t

been initialized yet. The first run-through fills in

the empty boxes. The following run-throughs

help the grid of heights reach stability. It will

continue to run through the while loop until the

difference of its previous average and its new

average is less than .000001.

By default, boxes that are marked are not

altered during this process. However, if the

user specifies a smoothness factor, than the

following equation is applied.

neighborAverage = smoothness *

grid[i][j].getOriginalZ() + (1 - smoothness) *

neighborAverage;

getOriginalZ() is the box’s original average z,

acquired from its coordinates. The lower the

smoothness factor, the more it will blend in

with the rest of the grid.

Once the grid is stable, we continue.

Scale the mesh

This involves going through the grid one more

time and finding the new minimum and

maximum altitudes and scaling them between 0

and 1

Create the obj file

The last step involves two parts: vertices and

faces.

Boxes need to be assigned a number from 1 to

the resolution size so that it can be used by the

faces later. This is done by making a counter

that starts at 1, and then scanning through the

grid, box by box. While assigning a box its

number, you also output the vertex to the obj

file, in the format of “v x y z”, where x, z are

replaced by a box’s coordinates, and y is the

box’s average altitude (this was done so that it

would display correctly in our renderer).

x = i / (float) gridSize;

z = j / (float) gridSize;

y = grid[i][j].getAverageZ();

Once all of the vertices are printed, it is time to

do the faces. Two triangles are constructed for

every box coordinate, except those in the last

row and last column.

The first triangle is “f num num+1

num+gridSize” where num is a box’s assigned

number, and gridSize is the resolution.

The second triangle is “f num+1 num+gridSize+1

num+gridSize”

After the output file is closed, it then runs a

system command that launches our renderer,

using the obj file we just created. Inside of the

renderer, it can be viewed, subdivided, and

given basic Gouraud shading using existing

algorithms [3,4].

Result

The run time of the program is dependent

on the resolution of the grid, as well as the

cut-off point for when the grid is stable

(.000001). There is a noticeable spike in

execution time when running with a

resolution of 50 (2500 boxes), and a

resolution of 100 (10000 boxes). Reducing

the cut-off point fixes this problem, but

results in a slightly less accurate mesh.

Figure 2: Varying smoothness factors on an

image of the ‘Approach’ in Troy, NY From the

top left, smoothness of 1, .5, .1, .01, 0

Figure 3: Three different resolutions of a

contrived set of data, 5x5, 10x10 and 20x20

Figure 4: Example showing generated

terrain of the greater RPI Campus in Troy,

NY

Conclusion

Our techniques produced viable terrain samples

of multiple real world terrain pieces and

allowed us a great ability to understand the

connections between original data and results.

By examining both our data collection methods

and our data processing methods we were able

to gain insights on how to improve the overall

technique. In our test cases accuracy of data is

important, but quantity of data is even more so.

GPS sampling techniques can yield errors that

drift during different times of day, as the GPS

unit communicates with different GPS satellites.

These errors can be reduced by having more

accurate GPS systems, but can even more

accurately be accounted for by simply taking

many samples at many different times of day.

As the density of the point cloud grows, so does

its accuracy. Focusing on quantity of data rather

than quality also allows for a greater number of

cheap GPS units to be used, greatly reducing

the cost of individual modules.

Since data is averaged and smoothed while

being redefined to specified resolutions in the

post processing phase, the final results are also

always of specified data size, regardless of the

quantity of input data utilized.

Future Work

In the future our module would be extended

upon to be able to utilize data from more

precise GPS units, as well as switch to using a

more robust data transfer medium, to allow for

sampling rates greater than 1 a second over

http, for instance UDP transmissions being

beamed to a personally established server.

Different collection methods could also be

integrated into the same framework, allowing

data transmitted from satellite or range finder

to be uploaded and utilized in the same server

framework.

Our program would be extended upon to be

able to generate non-square output, as well as

make it so the weight of the heights inside a box

are dependent on the distance from the center

of the box (the closer it is, the more it

contributes).

References

[1]U.S. Department of the Interior. "Measuring

and Mapping the Topography of the Florida

Everglades for Ecosystem

Restoration." Http://egsc.usgs.gov. Web. 22

Apr. 2010.

<http://egsc.usgs.gov/isb/pubs/factsheets/fs02

103.pdf>.

[2]Lau, Tsz-Yam, You Li, Zhongyi Xie, and

Randolph W. Franklin. "Sea Floor Bathymetry

Trackline Surface Fitting Without Visible

Artifacts Using ODETLAP." Web.

<http://www.ecse.rpi.edu/~wrf/p/129-

acmgis2009-lau.pdf>.

[3]DeRose, Tony, Michael Kass, Tien Truong,

and Pixar Animation Studios. "Subdivision

Surfaces in Character Animation. " Web.

<http://portal.acm.org/ft_gateway.cfm?id=280

826&type=pdf&coll=GUIDE&dl=GUIDE&CFID=8

7864502&CFTOKEN=20721222>

[4]Hoppe, Hugues, Tony DeRose, Tom

Duchamp, Mark Halstead, Hubert Jin, John

McDonald, Jean Schweitzer, and Werner

Stuetzle. "Piecewise Smooth Surface

Reconstruction. " Web.

<http://research.microsoft.com/en-

us/um/people/hoppe/psrecon.pdf>.

