
Modeling the Dynamics of Chalk:

Methods for Efficient Approximation

Joshua Greenman
Rensselaer Polytechnic Institute

May 15, 2010

Abstract

The modeling of various materials is often a refined process, wherein
a combination of actual physical properties and visual shortcuts are used
to achieve an accurate rendition. Solids can be modeled with varying
rigidity and elasticity; Liquids can be modeled with varying viscosity;
Even gases and particle fields can be represented with varying densities.
Often, rigid solids must be able to support permanent deformation—for
some materials, denting is sufficient. For many others, breakage must
be considered. We find an interesting case to be those materials that
are constantly crumbling on a small scale. Blackboard chalk is one such
material, wherein its use relies on a perpetual breaking off of particles to
mark another surface. In this paper, we will be discussing efficient and
inexpensive approximation methods to accurately model the behavior of
Chalk under normal circumstances.

1 Introduction

Any given object—if intended to be
modeled in a semi-realistic fashion—
must be modeled under a given set
of conditions which can be used to
evaluate its exact state at any given
timestep, stored by a set of elements
representing the objects’ current state.
In order to accurately represent the
state of the stick of chalk, we chose
to use a 3-dimensional field of densely
packed particles. As the chalk was
modified by its environment, the par-
ticle field would update to represent
the new condition and position of the
chalk. So, then, each interaction be-
tween the chalk and its environment

would be atomic; That is, each indi-
vidual particle would interact with the
environment, and it’s adjacent parti-
cles, eventually representing the entire
object. It is therefore relevant to enu-
merate the forces acting on each par-
ticle as we define our problem space.

Global
Fgravity Gravitational Force

Chalk
Fapplied External Movement
Fbond Bond to rest of Chalk

Chalkboard
Fnormal Normal to Chalk forces
Ffriction Perpendicular to Normal

Table 1: Forces on any particle

1

Figure 1: Chalk particle free-body di-
agram

As one might imagine, these forces
(in conjunction with the current state
of the particle at any given timestep)
would be used to calculate the state
(position & condition) of a particle in
a given timestep.
Not surprisingly, a direct calculation
of applied forces to each particles
throughtout a dense mesh is quite com-
putationally burdensome. However,
given the dormant state of most non-
surface particles in most environmental
interactions, we believe an approxima-
tion that considers only surface parti-
cles will be sufficiently accurate, and
much more practical.
In this paper, we will discuss the meth-
ods and approaches used to generate
the initial representation of the chalk,
to calculate the state of the chalk in
a given timestep, and to represent the
state of the chalk at any given time as a
mesh. We will then review the overall
results of these methods, identify spe-
cific challenges encountered along the
way, and state our conclusions regard-
ing our approach.

2 Generating the Ini-
tial Representation

In order to begin modeling our interac-
tive chalk piece, we first had to create a
field of particles that could accurately
represent the particles making up the
stick of chalk. Originally, we proposed
generating a uniform field of particles,
with surface particles flagged so that
they might be the point of primary in-
teraction when colliding with a chalk-
board. In Figure 2, we can see the
field of chalk particles generated in a
cylindrical space, where red particles
are ”on the surface” of the chalk. Note
that in this illustration, all surface par-
ticles are determined by their presence
in the modified convex hull Surface
solution discussed in QuickHull [1].

Figure 2: 10,000 particle cylinder

First, a 3-dimensional transforma-
tion matrix must be generated via in-
verse kinematics to determine the rota-
tional transformation needed to place
the chalk stick in the scene. Once such
a matrix t exists, generation of parti-
cles is simple; given a center position
c, orientation d, radius r, and chalk
length L,generation of n particles is
defined as:

2

For n particles:
float x, y = Rand[−r,r]

where x2 + y2 = 1
float z = Rand[−L

2 ,
L
2]

store (t ∗ (x, y, z) + c)

Figure 3: 3-D Particle Generation
As mentioned earlier, significant ad-

vantages are to be gained from min-
imal representation of the chalk. So,
recognizing that chalk generally writes
with its tip, and its sides are more-
or-less non-interactive, we decided to
make two major changes in represen-
tation:

1. Rather than even distribution through-
out the volume of the cylinder, gather
a dense plane of particles at the tip,
perpetually representing the state of
the chalk-tip’s geometry

2. Because of the significance of the
cylindrical shape and form of the body
of the chalk, intentionally and evenly
generate the circular edge particles to
allow for a more consistent and realis-
tic model of the shaft.
In Figure 4, we see a representaion of
this form, where all particles are sur-
face particles (black, because non-extremity,
and intentionally generated edge parti-
cles are emphasized in red).

Figure 4: 1,000 particle approximation
Particle generation from Figure 3

is simplified here by setting the z-component
for each generated particle to 0. A
simple trigonometric function is imple-
mented for selecting ring points at an
evenly spaced θ.
In the next section, we will discuss a
generic method for parsing the state of
the chalk at a given timestep, and later
implement the changes needed to sup-
port this improved representation.

3

3 Calculating
Successive States

The change-of-state of the field of chalk
particles is given by a rather com-
plex algorithm, which can be simplified
when broken down into the following
four phases:

1. Calculate Fnormal & Ffriction for
this iteration based on the previ-
ous number of collisions

2. ”Remove” all particles marked as
having a broken bond from the
previous iteration

3. Evaluate the state of all parti-
cles, validating surface penetra-
tions and marking broken bonds

4. Update forces, & apply to chalk
position

Before proceeding, let us immediately
dispel any confusion related to the or-
der of the steps above. If a particle is
to contact a surface with enough force
to potentially break its bond, it does
not actually break off the chalk until
the chalk is further moved. for this
reason, we process those particles that
are deemed ”marked” in the following
state, when we can also evaluate their
actual connection to the chalk. Other-
wise, chalk chould just disentegrate by
being pushed continually downward,
which is quite obviously inaccurate.
Let us further elaborate upon the de-
tails of each step.

1. Based on the number of collisions
in the previous step, we calculate both
the Normal and the friction to be ap-
plied in the upcoming iteration. If
there were no collisions from the pre-
vious step, both of these values are 0,

because there is no contact between
the chalk and the surface. If there are
any touching particles, we determine
the friction acting based on the motion
of the chalk, and divide it up amongst
the total number of contacting par-
ticles. Note that, if motionless, the
friction will instead be dependent on
the perpendicular component of the
net force—if this is less than the max-
imum force of static friction for these
two surfaces, unless a bond breaks, the
chalk will not move.

2. For all those particles marked as
having their bond broken from the
previous iteration, a mark is made on
the surface, and the particle is finally
”removed” from the chalk. Note that,
in accordance with having a single field
of particles representing the tip, we in-
stead ”receed” the particle into the
body of the chalk, anti-parallel to the
chalk’s orientation, by twice the radius
of a given particle. This achieves ap-
propriate deformation of the surface
mesh, but dodges the need for imme-
diate surface recalculation. Given the
small scale of the following diagrams,
the success of this technique may be
more visibly observed in Figure 8 in
the results section.

3. The current particles must be evalu-
ated to determine whether or not they
lie on (or have crossed through) the
contact surface. For each penetrating
particle, the force of friction is com-
pared to the force of the covalent bond
holding the particle to the chalk. If the
force is indeed large enough, a flag is
set on the particle indicating its bond
will be broken. In the diagram below,
this will be represented by the color
green.
If the force is not large enough to break

4

the bond, it may be possible that a
correction of chalk positioning is in
order—if the particle has penetrated
the surface, but did not have enough
friction force applied to actually break
off the chalk stick, then it could not
have possibly penetrated the surface
in the first place. If the particle is on
the surface, nothing needs to be cor-
rected; however, anything further, and
the entire mesh must be moved per-
pendicular to the surface, such that
the point in question now lies ON the
surface instead of through it. When
this happens, the number of collided
edges may change, and therefore must
be recalculated. The friction is then
divided up amongst the new number of
collided particles, as this new number
represents what the ”actual” state of
collision must have been. These such
particles are marked below in blue.
Consider below the red identified pen-
etrations. One is identified as impos-
sible, and is marked blue. The blue
particle is moved above the surface,
and the cycle repeats. Eventually, red
particles instead become green as they
are deemed as proper collisions, and
set up to be broken bonds in the next
iteration.
Note that though a wireframe is visible
in the picture below, it is only done so
that the picture may be more discern-
able. At this point in time, the field of
particles is just that, and has no real
edges connecting them.

4. The only force that has been
changed over the traversal of this it-
eration of the algorithm is the friction
force, which may have been reduced
by the breakage of bonds. To clar-
ify, when a bond breaks, instead of
the chalk experiencing that particle’s
fraction of friction resistance, it in-

stead experiences resistance equivalent
to the amount of force used to break
the bond (always less resistance than
the friction would have been, else the
bond would not have broken).
From this actual-applied-friction value,
we re-calculate the net force. Be-
cause the final net force is particle-
independent, divide the Net Force
by the chalk’s mass to determine its
acceleration. Determine the velocity
by multiplying its acceleration by the
timestep interval, and adding it to the
current velocity. Finally, deterine the
position by applying the velocity to the
current position with the appropriate
time interval. Create a transformation
matrix from the difference between the
target center position and the starting
center position, and apply it to all par-
ticles.
Although admittedly arduous and con-
fusing at first, this very thorough algo-
rithm guarantees a relatively accurate
approximation of state, assuming a
reasonable timestep has been chosen
(too small a timestep, and not enough
force to create a broken bond will ex-
ist; too large a timestep, and too many
particles for accurate determination
will cross through the surface at once).
Finally, let us present both the offical-
ized form of the algorithm, and also
identify the computational time of this
schema.
Note that determining current colli-
sions at a timestep takes O(n) time.
Also, consider the following abbrevia-
tions to be used throughout the algo-
rithm specification:
Chalkboard = cb
frictionfraction = ff

fperpendicular = fperp

resistanceactual = resist

5

Figure 5: The progressive collision-parsing algorithm. Red particles are not-yet-
validated penetrations; Blue particles are deemed invalid penetrations, and are
moved up to the top of the colliding surface; Green particles are broken bonds.

3.1 Algorithm

fnormal, ffriction, ff, resist = 0
if current− collisions > 0:

fnormal = (fgravity + fapplied).Dot(cbnormal) ∗ cbnormal

fperp = fnormal.P erp()
if vel == 0:

if fperp <= fnormal ∗mustatic:
ffriction = fperp.Negate()

else
ffriction = fperp.Norm() ∗ |fnormal| ∗mustatic

endif
else

ffriction = fperpendicular.Norm() ∗ |fnormal| ∗mukinetic

endif
ff = ffriction/numcollisions

endif
for all previous bond-broken particles p:

cb.mark(p)
p.setCollidedF lag(false)
p.receed()

endfor
for each particle p:

6

if p has collided:
if ff < fbond:

if p is through cb:
Determine translationT between p and closest point p1 on

surface
Apply T to all particles
Reset resist to 0
Reset ff to ffriction/num.collisions

endif
resist+ = ff

else
p.setCollidedF lag(true)
resist+ = fbond

endif
endif

endfor
ffriction = resist
fnet = fgravity + fapplied + fnormal + ffriction

acceleration = fnet/masschalk

velocity = velocity + acceleration ∗ (timestep)
Translation T = velocity ∗ (timestamp)
Apply T to all particles
In the actually impossibe worst case of each and every particle being both a
bond-breaking collision, and non-bond-breaking (mesh shifting) collision, the
time for this algorithm is O(3n) +O(n2) = O(n2). However, in a realistic aver-
age case, it would most likely be O(4n) = O(n).

4 Interpolating the
Surface Mesh

As mentioned earlier about the Figures
thus far, the wireframe models shown
are not actually an implicit part of the
scene data, but are rather intentially
displayed to augment the viewer’s un-
derstanding of each given illustration.
It is not surprising that, just as we have
needed to display a mesh to make the
illustrations of this paper more legi-
ble, that we also must display a mesh
to make the deliverables of this paper
comprehensible. Therefore, we must
implement a method of creating a full
mesh from just a collection of other-

wise unassociated particles.
This problem was first tackled on a
2-dimensional plane, by R.A. Jarvis in
1973, who proposed a ”Gift-Wrapping
Algorithm” that could effectively
place a large rubber-band around any
given set of 2d pegs. Since then,
many schemes have been developed to
achieve similar effects, in both 2 and 3
dimensions. Now, we know this as the
Convex Hull algorithm, and there are
many modern variations and optimiza-
tions that can be employed, varying by
the data to be wrapped.
A basic form of Convex Hull was used
to wrap the chalkstick represented in
Figure 1 (though the mesh itself is not
shown, the vertices selected to com-

7

pose the mesh are shaded red). The
algorithm works as follows:

1. Select two random, unique points p1 and p2

2. Select a third point p3, not colinear with p1 and p2, forming a
triangle with those two points
3. Select a fourth point p4, not coplanar with p1, p2, and p3, forming
a tetrahedron with those three points
4. For every point pn:

if (pn) is outside the currently enclosed area
for each triangle with its normal facing pn:

store any edges that share faces whose normals do NOT face
pn (silhouette edges)

delete all other edges, along with this triangle
endfor
for each silhouette edge:

create a triangle between its two vertices, and pn

endfor
endif

endfor
Consider the diagram below, illustrating the original tetrahedron, following it-
eration, and followed by iterations 16 and then 35.

Figure 6: The progressive succession of the convex hull algorithm.

As one can see, convex hull works
quite nicely for enlarging these uniform
particle fields. However, our optimiza-
tion to the chalk model have introduce
an interesting set of complications:
Because our model is quite angular,
particularly at creation, finding nor-
mals that face any given point can
become quite troublesome. In our sit-
uation, floating point error begins to
become significant: if many edges are

just-about-90-degrees in angle, it is dif-
ficult for floating point to consistently
recognize this. Consider the Figures
below, which are examples of failed
convex hull calculations as a result of
this precision error.

8

Therefore, when choosing which edges
to ”silhouette” the mesh at any given
state during convex hull, we must find
a reliable method of preventing mis-
takes. Implementing a static error
margin is actually quite inconsistent,
and presents a similar inconsistency
in completion of the hull. However,
by observing the number of silhouette
edges found relative to the number
of ”facing” triangles identified, we can
use two relatively speedy modifications
to guarantee a safe iteration.
The primary observation leading to
this methodology was the realization
that, given n triangles, if all trian-
gles are contiguous—and there are no
holes—there cannot be more than n+2
silhouette edges. So, if at any iteration,
more than n+ 2 silhouette edges exist,
it means at least one of the following

two scenarios has occurred:
A) Multiple discontiguous triangles or
triangle clusters exist
B) A ”hole” of one or more triangles
exists in the cluster.

First, let us propose a method to re-
solve A, considering list L of silhouette
edges: For each silhouette edge, enu-
merate all of its neighbor silhouettes
until its entire cluster has been closed.
Do this for all clusters. Retain the
cluster with the highest count, and
discard all other clusters.

Second, let us propose a method to
resolve B, considering the lists gener-
ated in A, and a new list T of triangles
contained by L: For every remaining
edge in M, locate the single triangle
adjacent to the opposite of the edge.
If the triangle is adjacent to any trian-
gle in L, this is an internal hole. Add
all triangles adjacent to this triangle
not already in L until no more such
triangles exist.

9

5 Results

Before we can begin to summarize our
results, we must first enumerate the
variables that played heavily into the
actual calculations. The chalk input
file allows the bond force, particle
mass, particle radius, cylinder reso-
lution (number of sides), and surface
resolution to be set. The chalkboard
input file allows the coefficients of ki-
netic and static friction to be set.
Out of these, the only variables that
can influence the validity and general
success of the results (assuming rea-
sonable size and positions for chalk
and chalkboard) are bond force, par-
ticle mass & raidus (i.e. density), and
coefficients of friction. In order to min-
imize error from these three degrees of
freedom, I attempted to find official
determination for these values, but
was unable to find a reliable source.
I was, however, able to locate a class
project performed by a few high-school
students [2], and average their results
to obtain reasonable value for these
variables.
Density(kg/m3) = (1100 + 1100 +
1800 + 1700)/4 = 1425kg/m3
Coefficientofkineticfriction =
(0.68 + 0.68 + 0.66 + 0.63 + 0.52)/5 =
0.634
Not surprisingly, the ”force of cova-
lent bond” isn’t exactly an accurate
paradigm for the force of holding a
particle to a stick of chalk, but rather

was a convenient visualization for the
sake of this project. So, this ends up
as our only entirely undetermined vari-
able.
We also needed to play around with
our timestep to find a safe quantity.
The safest timestep ended up being
0.02 - 0.03 seconds, wherein no more
than 20 and no less than 5 particles
on average crossed the surface in any
given timestep. Given the procedure
our algorithm follows, this seems to be
ideal.
Finally, when we used a value of 0.15
for fbond at a timestep of 0.02 seconds,
we got the following images:

Figure 7: Displacement of the chalk
surface. Blue and green particles are
recently either moved or receeded.

10

Figure 8: The final rendering.

6 Challenges & Limi-
tations

Listed below here are some of the more
frustrating technical challenges I faced.

• Random appearances of NaN

• ”Painted” line on chalkboard
showed up randomly

• Continuous issues with re-
pairing opposites in Half-edge

• My T43p was not built to deal
with 10,000 particles

Limitations with this approach in-
cluded an inability to accurately model
sideways strokes, as well as more-or-
less of a guessing game with various
constants.

7 Conclusion

The approximation scheme used to em-
ulate chalk particle destruction seems

11

viable, although my implementation
is rather unreliable and unstable. I
imagine future work in cleaning up the
codebase would significantly stabilize
results, and would also allow for an
exploration of topics such as breaking
and larger fracturing.
I learned quite a bit from this project—

among those things, that this was far
too large of a project to undertake
alone. Regardless, it was a phenom-
enal learning experience, and I hope
to continue to explore the benefits of
semi-realistic approximations in com-
puter graphics.

References

[1] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. The quickhull algorithm
for convex hulls. ACM Trans. Math. Softw., 22(4):469–483, 1996.

[2] C. Ting, C. Lok, L. See, M. Ka, and M. Long. Talking chalk. St. Francis
Xavier’s College, 1(1), 2002.

12

