
Lightcuts

Jeff Hui

Advanced Computer Graphics 2010

Rensselaer Polytechnic Institute

Fig 1. Lightcuts version on the left and naïve ray tracer on the right.

The lightcuts took 433,580,000 clock ticks and

the other took 988,800,000 clock ticks to render.

Abstract

Lightcuts is a technique to efficiently handle

rendering scenes with many lights. The algorithm

has sublinear performance in comparison to linear

performance of traditional methods.

Keywords: illumination, ray tracing, Lightcuts

rendering, many lights

1 Introduction

While much effort has been placed in improving

rendering of scene geometry and shading, there is

little effort in improving the linear performance

time of lights in a scene. Authors of a rendering

need to be concerned with the number and

placement of lights.

Lightcuts[1] is one of the few techniques that tries

to address this. The basic premise relies on

utilizing a tree of lights to determine which lights

to use at a particular query point.

2 Background

The original work[1] describes the original

technique, although is void of some details, such as

sublinear tree building, which is covered in a

subsequent paper [2].

The technique was expanded upon to support

advanced ray tracing features, such as depth-of-

field, participating medium, and motion blur[3].

3 Lightcuts Technique

Given a set of lights, a subset of those lights can be

used to approximate the illumination at a given

point. The goal is to use the smallest subset of

lights that incurs visual error below a threshold

(usually 2%). The illumination of a group of lights

to a particular point x being viewed at

�� � �����,
�
���� �����
� ∈ �

Fig 2. Light tree of four 1-intensity lights.

3.1 The Light Tree

To compute on a per ray cast efficiently, a light

tree is built before rendering. This binary tree

consists of light clusters. Each leaf of the tre

represents an actual light in the scene. All the

interior nodes are light clusters that contains two

children light clusters, either real lights or other

light clusters.

The clusters are organized with most similar lights

sharing the same parents. For example, two lights

with the similar position, color, and intensity

would be grouped into a cluster. This is repeated

until one cluster represents all the lights in the

scene, the root node of the light tree.

The naïve method of building this tree is O(n3)

where n is the number of lights in the scene.

Alternatively, using a KDTree and heap can be

used to achieve O(n log n), but Agglomerative

Clustering provides empirical sublinear

performance better than the heap method [2].

Agglomerative Clustering relies

decreasing property of the dissimilarity of two

4

2

1 1 1

point. The goal is to use the smallest subset of

lights that incurs visual error below a threshold

(usually 2%). The illumination of a group of lights

being viewed at w is:

� � �� ��� 1�

lights.

To compute on a per ray cast efficiently, a light

tree is built before rendering. This binary tree

consists of light clusters. Each leaf of the tree

represents an actual light in the scene. All the

interior nodes are light clusters that contains two

children light clusters, either real lights or other

The clusters are organized with most similar lights

xample, two lights

with the similar position, color, and intensity

would be grouped into a cluster. This is repeated

until one cluster represents all the lights in the

scene, the root node of the light tree.

The naïve method of building this tree is O(n3)

where n is the number of lights in the scene.

Alternatively, using a KDTree and heap can be

used to achieve O(n log n), but Agglomerative

Clustering provides empirical sublinear

performance better than the heap method [2].

Agglomerative Clustering relies on the non-

of the dissimilarity of two

clusters to create the same clusters consistently in

any particular order.

Agglomerative Clustering can be multi

provide even faster bottom-up tree building times.

This minimizes the impact of building the light

tree.

3.2 Using the Light Tree

The light tree is used during rendering to determine

which light clusters should be used. For each query

point, we build a lightcut – a set of nodes that

separates the root from its leaves. Leaf nodes

actual lights, while the interior nodes uses

representative light: a random light from its

children. The probability a given light is chosen as

the representative light is dependent on the light's

intensity. However, the cluster stores the intensity

is of all the real lights it contains.

The cut first starts at the root. If the root's upper

error bound (see 3.3) is greater than the acceptable

error ratio (2%) times the total estimated

illumination, the root is replaced with its children.

This is repeated with the node with the highest

upper error bound until the total estimate

illumination times the ratio is greater than the

upper error bound.

The illumination of a particular cluster to a point is

estimated as:

�� � ����,
�
����������
�

Where j is the representative light for the cluster.

This is used to calculate the total estimated

illumination. The upper error bound uses the same

equation, with different M, G, V functions.

3.3 Upper Error Bound

2

1

Light

Intensity

to create the same clusters consistently in

Agglomerative Clustering can be multi-threaded to

up tree building times.

mpact of building the light

The light tree is used during rendering to determine

which light clusters should be used. For each query

a set of nodes that

separates the root from its leaves. Leaf nodes are

actual lights, while the interior nodes uses

representative light: a random light from its

children. The probability a given light is chosen as

the representative light is dependent on the light's

intensity. However, the cluster stores the intensity

s of all the real lights it contains.

The cut first starts at the root. If the root's upper

error bound (see 3.3) is greater than the acceptable

error ratio (2%) times the total estimated

illumination, the root is replaced with its children.

ted with the node with the highest

upper error bound until the total estimate

illumination times the ratio is greater than the

The illumination of a particular cluster to a point is

� �� ��
 ∈ �

 ��� 2�

Where j is the representative light for the cluster.

This is used to calculate the total estimated

illumination. The upper error bound uses the same

equation, with different M, G, V functions.

Ideally, we would take the difference from the

exact and estimated illumination values, but that

would require knowing the final illumination.

Instead, an upper bound is used to estimate the

difference.

Equation 2 is still used to calculate the upper error

bound, with M, G, V functions changed to their

upper bounds as mentioned in the original lightcuts.

Visibility. The visibility function is too difficult to

calculate cheaply and accurately enough. For

simplicity, it is always one. This means all lights

are potentially visible.

Geometric. This is term is dependent on the type

of light. Since all our senses assumed uniform

point lights, the function is simply the closest

distance from shade point x and the cluster's

bounding box volume.

Where y is the position of the light and x is the

point to shade.

Material. The phong material needs to be upper

bounded. The equation was used is as follows: [4]

 ���Θ�, Θ�� � k� ��+ k!
"#$
$� cos" α

Where Kd is the diffuse reflectance constant, Ks is

the specular reflectance constant, n is specular and

α is the angle from the ideal reflection direction

and the eyepoint.

4 Difficulties

The primary difficulty is calculated acceptable

error. The lightcuts paper is ambiguous and

slightly disorganized when covering the upper

error bound – also called 'bounding cluster error',

'upper bound on cluster error', and 'error bound'.

The provided method to calculate the upper bound

of the geometric term extends the number of

lightcuts. This may be correct, but would require

more than 400 lights in the scene (perhaps

thousands). But render and tree-building times

were too large in the limited time scope to

complete.

Also due to time constraints, the single-threaded

agglomerative clustering implementation was not

implemented. The naïve O(n3) implementation

was used.

Due to the poor error upper bound implementation,

there are visual errors in the rendering examples.

5 Future Work

There plenty other avenues of improvement

besides resolving the error calculation and adding

agglomerative clustering. The current

implementation assumes uniform point lights,

which can be adjusted to support directional lights

and oriented lights. Also, utilizing reconstruction

cuts would aid in building faster lightcuts through

the light tree, by interpolating lightcuts between

similar shading points.

Furthermore, features mentioned in

Multidimensional Lightcuts: use gather points to

allow features that require multiple ray casts per

pixel and smooth animations (motion blur, depth of

field, participating medium).

We attempted to use ImageMagick’s compare tool,

to contrast the lightcuts version from the regular

ray traced one. But compare finds exact pixel

mismatches, not close to a perceived difference. A

tool to do image subtraction would be useful, but

time did not permit the creation of one. For this

reason, most of the difference images are not

included.

6 Conclusion

As mentioned, the final results are less than

spectacular due to the weak error calculation

method. The lightcuts method renders slower with

few scene lights – due to the overhead of building

the tree and performing cuts. However with many

lights, the cost of iterating over every light can be

reduced. Instead, we took the same distance

calculate and took the square of the reciprocal.

Scenes with few lights in unique positions

performed worse, but since lightcuts is generally

used in complex scenes with various kinds of lights

(simulated with point lights), the technique is still

useful.

6.1 Performance

Although the lightcut renderings produce artifacts,

they were significantly faster when used on scenes

with 100 lights. Scenes with few lights ran about 2

times slower than the naïve ray tracer. The

lightcuts method rendered in half the time in

scenes with 100 lights.

References

[1] Walter, Bruce, Sebastian Fernadez, Adam Arbree,

Kavita Bala, Michael Donikian, and Donald P.

Greenberg. "Lightcuts: A Scalable Approach to

Illumination." ACM SIGGRAPH 2005 Papers (2005):

1098-107. ACM. 7 Apr. 2010

<http://www.graphics.cornell.edu/~bjw/papers.html>.

[2] Walter, Bruce, Kavita Bala, Milind Kulkarni, and

Keshav Pingali. "Fast Agglomerative Clustering."

IRT (2008). 6 Apr. 2010

<http://www.graphics.cornell.edu/~bjw/papers.html>.

[3] Walter, Bruce, Adam Arbree, Kavita Bala, and

Donald P. Greenberg. "Multidimensional

Lightcuts." ACM SIGGRAPH 2006 Papers (2006):

1081-088. ACM. 6 Apr. 2010

<http://www.graphics.cornell.edu/~bjw/papers.html>.

[4] Miksik, Miroslav. "Implementing Lightcuts."

CESCG (2007). CESCG. 6 Apr. 2010

<http://www.cescg.org/CESCG-2007/>.

Timings for the scenes mentioned below. All timings are in ticks.

Scene # Lightcuts Tree Build Time Total (Cuts + Tree Build) Naïve Ray Tracer

2 4,370,000 0 4,370,000 1,870,000

3 (Top down) 190,300,000 150,000 190,450,000 719,260,000

3 (Side) 256,020,000 140,000 256,160,000 537,010,000

4 (w/o

Reflection)

209,210,000 160,000 209,370,000 533,750,000

5 (w/

Reflection)

433,430,000 150,000 433,580,000 988,800,000

Scene 1: Five lights near the bottom left corner of the plane. Two lights are in the same location.

Left: Only the root light node is used.

reflection for the spheres indicates the number of lights used in the scene

Top-Left: Lightcuts render, Top-Right

used per pixel (lighter = more lights in

true value (marked in red). The lightcuts version

Five lights near the bottom left corner of the plane. Two lights are in the same location.

oot light node is used. Right: All the lights are used for rendering. Notice the specular

indicates the number of lights used in the scene.

Right: naïve ray tracer, Bottom-Left: Number of lights the lightcuts

lighter = more lights in cut, darker = less lights in cut), Bottom-Right: Pixel error

true value (marked in red). The lightcuts version never used all 5 lights.

Five lights near the bottom left corner of the plane. Two lights are in the same location.

. Notice the specular

Number of lights the lightcuts

Pixel error from

Blooper: Error calculation results in crop-circles when visualizing the number of lights used. (Scene 1)

Scene 2: Four lights near the corners of the plane.

Left: Lightcuts Rendering, Center: is naïve ray tracer, Right: is the number of lights used where white is

all four lights, light gray is three lights, and dark gray is two lights.

Scene 3: Scene with a 100 lights in a grid

Left: Lightcuts version, Center: Naïve

Left: Lightcuts version (top-down),

Scene 4: Ring with a wood texture floor with the same 100

Left: Lightcuts render, Right: Naïve

enabled.

100 lights in a grid-like pattern over the ground plane.

aïve Ray Tracer, Right: Number of lights used for lightcuts per pixel.

, Center: Naïve Ray Tracer, Right: Difference - marked in red.

: Ring with a wood texture floor with the same 100-light grid setup. Same scene as Fig 1.

aïve ray tracer. The error is more noticeable without any reflection

Number of lights used for lightcuts per pixel.

marked in red.

light grid setup. Same scene as Fig 1.

t any reflection

