Visually appealing water flow over a terrain

Eddie Lau
CSCI-6530 Advanced Computer Graphics Final Project 2010
Rensselaer Polytechnic Institute

Figure 1: Water flow simulation of a scene with three water pools on a slope. Initial (left), In-between (middle), Final (right)

Abstract

This project implements a program to simulate water flow over ter-
rains. As in many other computer graphics applications, we look for
reasonably fast computation and rendering. So the prediction of ex-
act quantities as stated in physical laws is not our goal. However to
ensure our results look visually appealing, we still need to apply the
physical laws to a certain extent so as to account for several charac-
teristic features of the phenomenon, including water flow, soil ero-
sion and deposition, and evaporation. Which physical laws to use
and how much they should be simplified are challenges facing us.
The framework introduced by Benes et. al. [Benes and Forsbach
2002], which is later extended by Anh et. al [Anh et al. 2007], is our
final choice. It is which we find to-date balancing the two conflict-
ing requirements well. The model adopts a layered data structure
to store the elevation, water volume, dissolved material volume and
water velocity of every grid point of the terrain. Every simulation
step is discretized into a few operations to decide how much soil
gets eroded, which direction(s) the water should flow, how much
soil should be deposited, and how much water to be evaporated.

Keywords: simulation, water flow, terrain

1 Introduction

My project aims at creating visually appealing water flow anima-
tions over a terrain. By appealing we expect more than deriving
the river locations, assigning a single water flow direction for each
of them and finally animating water flow along the streams. We
wish it to show some characteristics phenomena happened in the

real world, including water spreading to all deeper neighbors (in-
stead of just one particular direction), and terrain changed due to
soil erosion and sedimentation as water passes.

The paper by [Benes and Forsbach 2002] introduces a simple
framework capable of simulating all the phenomena mentioned
above. Its use of a layered data structure to store the essential ter-
rain attribute values like elevation, water and dissolved sediment
amounts, together with the way it takes to handle water movement
and soil erosion and deposition on the course of simulation, are still
the foundation of many successors like the one presented by [Anh
et al. 2007], which features a few improvements over the original
Benes’ model, in particular the incorporation of water speed into
consideration of sediment capacity.

This paper summarizes my final model mostly referenced from Anh
et, al., with side notes on a few issues not explicitly addressed in
both Benes’ and Anh’s articles. It is structured as follows: In sec-
tion 2, I present the details of the data structure. In section 3, I will
go through the dynamics of the simulation system, including water
flow, sediment dissolution and deposition, and water evaporation.
In section 4, I will describe the overall simulation process. This is
followed by a result and discussion in section 5, before coming to a
conclusion and further works in section 6.

2 Data model

If we assume the terrain to have no concave structures like caves
and overhangs, what we need to know ultimately in order to render
the terrain are the single elevation and the amount of water at each
point over a regular 2D spatial grid. While numerous more compact
models have been developed, a layered data representation in which
we keep a single value for each attribute at every spatial location, is
the choice of Benes et al and their successors. Data can be readily
updated and rendered without much additional processing, which
simplifies coding and speeds up rendering for interactive display.

To model sediment transport, Benes introduces an additional at-
tribute called dissolved sediment to store the corresponding amount.
To allow water speed to affect the sedimentation process as in real-

Attribute Symbol
Elevation H
Water Amount w
Dissolved Sediment | S
Velocity (3D) v

Table 1: Attributes for each spatial location

ity (in which a faster current is more likely to carry soil with it than
the lower current), Anh et. al. adds a 3D vector called velocity for
each spatial location. Table 1 below summarizes the layers in the
spatial data grids of our program.

3 Operations

3.1 Water Flow

To simulate water flow over a terrain, we need to decide in what
direction and the amount that the water at each location is going to
flow. Velocity is updated as well, as it speeds up on travelling down
a slope and gets retarded due to sliding friction.

3.1.1 Direction

[Hengl and Reuter 2008] gives an excellent overview of conven-
tional algorithms for finding the direction of water flow in a terrain.

D-4 and D-8 [O’Callaghan and Mark 1984] are a few single-
neighbor algorithms commonly used to derive a river network from
a given elevation grid. Both assume water flows towards a sin-
gle direction with deepest descent, and therefore direct water to the
deepest location from among the four or eight immediate neighbors.
Either one is reported to work reasonably fine on finding river loca-
tions: the deepest direction is likely to obtain most water to survive
under evaporation. But the total lack of water flow to all the other
directions means erosion or sedimentation which should have been
there (as in reality, some water flows to these directions anyway) are
missed. Another problem is that the candidate flow directions are
discretized to multiples of 90/45 degree. If the actual deepest slope
is somewhere between some two adjacent discrete directions, the
algorithm has to pick one of them. Huge errors can be accumulated
as the water flow across more and more locations.

D-infinity algorithm [Tarboton 1997] virtually allows flow to any
directions. The trick is to distribute the water over the two neigh-
boring cells proportionate to how close the deepest descent direc-
tion is relative to the two approximate discrete directions. However,
this variant still cannot model possible flows in opposite directions,
as at real mountain peaks or ridges.

In contrast, a multiple-neighbor algorithm distributes water to all
8 discrete neighboring directions at the same time, as long as
they are deeper than the current center location. Water that flows
away is partitioned to the immediate neighbors proportional to how
much lower neighboring water levels are relative to that of the cur-
rent location. Suppose AW is the total amount of water flowing
away from the current cell (whose value is discussed in the next
subsection), and Ahw; is the water level difference between the
current location and the neighborhood location indexed 7 (for 8-
neighborhood, ¢ = 1, 2, ..., 8). The amount of water that flows to a
particular neighboring spatial location i, AW}, is evaluated as

Ahwi
3 ey

AW; = AW —/——
>y Ahw,

Because of the above water partitioning scheme, the flow direction
is virtually not confined to a single direction as in the D-infinity
algorithm. Also, we now can distribute water to multiple directions
even if they are not adjacent. Because I see these two features are
essential for visual-appealing modeling of the reality, I adopt this
multiple-neighbor, just like Benes and Anh do.

3.1.2 Amount

There is an outflow as long as there is at least one neighbor with
lower water level. But for the total amount, [Benes and Forsbach
2002] highlights that it may, or may not, be the entire amount
present in the location. They use a simplified case with just two spa-
tial locations, which is reproduced in Figure 2, to explain the issue.
The point is that if the water level of the highest deepest neighbor is
higher than the elevation level of the current location (the top case),
blindly moving all water to the neighbors leads to the neighboring
locations now having water level higher than that of the current lo-
cation. This is impossible with real world large-scale water flow.
In such a case, the total amount is set such that after flowing the
appropriate portion to the highest deeper neighbor (according
to Equation 1), the water levels of the current location and that
neighbor location are the same (Figure 2 top).

If it is not the case, removing all water from the current cell is fine.
(Figure 2 bottom)

Figure 2: The two different cases for total water transport amount
calculation (top and bottom), reproduced from Benes’ paper. In
both cases, water is to be flown from the left location to the right.
Initial conditions are shown on the left figures and the expected final
conditions are described by the right figures.

3.1.3 Velocity

Ahn et. al. suggests the concept of water velocities on top of the
Benes’ original model. It is indeed essential to model how water
speed affects sediment transportation over the terrain, as discussed
in the next subsection.

Water at a spatial location is accelerated when the location receives
water flowing downwards from some neighbor. The acceleration
for that portion of moved water, @, can be calculated according to
the geometric model suggested by Anh et. al. (Figure 3).

o

= *
cumrenl el lower™erghtbor

Figure 3: The geometric model for acceleration calculation, repro-
duced from Anh’s paper

—

- . =
a = gsina =g

An

= @)
| X

However, as the water moves across spatial locations, or simply as
time goes on, it is also facing sliding friction. This is modeled by
applying a retardation factor K, € [0...1] to the water velocity of
every spatial locations at every simulation step.

The following formula computes the velocity of a volume of wa-
ter moving down to the neighbor v:4 A+, based on its velocity at
the previous time step v, acceleration @ and the duration of a sim-
ulation step At (which represents how long it takes for water to
travel from one location to an adjacent one). This quantity is used
when this amount of water is mixing with water in the destination
location, for computing the new water velocity there (our next sub-
section will have a discussion on this issue).

Uerar = V(1 — Ka) + GAL 3)

It should be noted that this velocity attribute does not affect how
much water is carried out from one spatial location to another in
each simulation step. That amount is determined solely by the wa-
ter level difference between adjacent spatial locations. Within one
simulation step, all such water level inbalances are settled.

When a lower neighbor cell receives the water AW with velocity
Uaw, its water amount and velocity are updated as follows.

Wnew =W + AW (4)

. Wv+ AWiaw
new = 5
1) W”’LEUJ ()

The following simple formula slows down water in the current lo-
cation in every simulation step, which occurs as time goes on.

Vi At = U_;:(l - Ka) (6)

3.2 Sediment dissolution and deposition

This is another interesting phenomenon that one would expect for
a visually realistic water flow simulation. Soil gets eroded at the
upstream and finally deposited at the downstream.

I adopt the model by Ahn et. al., which assumes the sediment trans-
portation capacity of water Scap, is proportional to both the total
amount of water W and speed |v|.

Seap = KW v (7

So whenever W or |v| changes (due to water flow towards the loca-
tion, natural water slowdown, or evaporation, described below), we
compute the new S¢,;, and then compare it with the actual sediment
amount S.

If S > Scap, then deposit

Hnew =H + Kd(S - Scap) (8)
Snew =5- Kd(S - Scap) (9)

Otherwise dissolve

Hpew = H — Ks(Scap - S) (10)
Snew :S+Ks(Scap_S) (11)

where K4 € [0...1] and K, € [0...1] control the rate at which
sediment is deposited and dissolved.

In contrast, in Benes’ original model, Scqp is assumed to be re-
lated to the total water amount only. Velocity does not play any
role. While it is fine for sediments that is dissolvable even in static
water (like salt), it may not be adequate for sediments which will
eventually get settled down once the water is stopped (like sand).

One point to note is that on dissolution, we need to make a height
boundary check: make sure K(S — Scqp) is not larger than H
before doing the update. Otherwise we may end up with negative
heights, as shown in Figure 4 below.

3.3 Evaporation

This accounts for water loss from time to time as the water
molecules gain enough energy to escape from the liquid surface.
As described by Benes et. al., in reality the amounts of water evap-
orated depends on the temperature and the area of the water surface.
With our regular grid representation, the surface area is more or less
the same for all the grid locations. Further suppose that the temper-
ature is constant over the same area. The evaporation of the water
can be described as

aw
T -K.W (12)

where K. is the evaporation coefficient talking about the speed of
water evaporation per unit volume of water, and W is the total
amount of water in the location. This implies the amount of wa-
ter decreases exponentially as time goes on.

Meanwhile, I adopt the following simplified version suggested by
Anh et. al, which has the advantage of simpler computation. It says
the amount of water survived from evaporation at the next simula-
tion step, Wi4 ¢, is reduced by a factor K. when compared with
that at the current simulation step W;.

Wt+At =WiK. (13)

- OpenGl Viewer =0|X

OpenGL Viewer o jm] b3

Figure 4: Buggy result for forgeting height boundary check on dissolution. Before (top), After (Down)

In either case, the amount of water will never reach zero, which
may cause problems to system expecting complete evaporation at
the end of the simulation. So Benes suggests if the water amount
drops below a certain threshold 7', the value is simply set to zero.

4 Simulation flow

4.1 Algorithm overview

The operations are combined together in the manner specified in Al-
gorithm 1 to proceed the forward erosion simulation, in which ev-
ery spatial location is checked one by one to deliver water to lower
neighbors.

4.2 Grid process randomization

In my earlier implementation, I processed the spatial location grid
from top to bottom, from left to right all the time. But the results
was consistently unsymmetrical even when I worked with symmet-
ric terrains, like staircase2d presented in Figure 5. To remedy, |
randomize the processing sequence for each simulation step. The
result looks much better now (See Figure 6 for the results of the
randomized version).

5 Results

While existing ray-tracing software package like POV-Ray [Persis-
tence of Vision Raytracker 2008] can readily render height fields
with water, finally I decide to modify the raster renderer we have
for assignment 2 for immediate result display. This feature allows
me to visualize the simulation result for every simulation step as
soon as it is available, which is useful for debugging purpose.

To verify correct implementation, first I start with a 2D scene stair-
case2d (Figure 6). Going down the slope from either the left hand
side or the right hand, at the beginning more and more soil gets
eroded, as water travelling down the slope are getting more and
more kinetic energy to carry soil with them. But after some point,
the amount of soil eroded is decreasing as the water has already
taken considerable amount of soil from the upstream, leaving be-
hind less and less capacity for new soil there. Even water speed
increase cannot help much. Finally when reaching the bottom, wa-
ter with opposite velocities mixes together, velocities vanish. At the
same time, it has nowhere to go and stay there, waiting for evapo-
ration. Both factors favor massive soil deposition there.

Scene Grid Resolution | Frame per second
staircase2d | 255 x 1 160

noise 128 x 128 44

pool 256 x 256 11

Table 2: Frame rate for the three test scenes using a Ubuntu 10.04
Desktop machine with 4 Intel Xeon CPU of speed 2.4GHz, 4GB
memory and ATI Radeon R300 ND

I have also attempted to reproduce a few scenes presented in Benes’
paper with my system. In the noise scene (Figure 7), a hole on an
artificial white noise surface is filled with water that evaporates.
Similar to Benes’ result, we get the bottom of the pool turn flat.
Water moves towards the center deep region with some soil. Water
gets evaporated there at the center, leaving behind sediment con-
tributing to the flat area.

Another scene named pools (Figure 8) involves three water pools
on one non-steep slope. This implies the deposition process may
occur right on the slope, well before the water gets at the valley. As
expected, we obtain bumpy results as Benes on the part of the slope
where the water passes. As the soil is repeatedly deposited and
dissolved, characteristic ridges are formed on the slope and down
at the bottom of the hills.

I use a Ubuntu 10.04 Desktop machine with 4 Intel Xeon CPU of
speed 2.4GHz, 4GB memory and ATI Radeon R300 ND to perform
the simulation. Table 2 shows the frame rates of the above three
test scenes. Even the most demanding pool can be rendered inter-
actively with a reasonable frame rate.

6 Conclusion and future works

In this paper I summarize what I have learnt from Benes’ and
Anh’s works and implemented for my terrain water flow simula-
tion program. A layered data structure recording the height, wa-
ter amount, sediment amount of each spatial location is adopted
to capture necessary data compactly for fast interactive rendering.
Multiple-neighbor flow is allowed so as to enable flow divergence
which occurs in the real world. The total amount of flow is care-
fully decided to ensure no overflow. Water speed is updated on the
course of simulation so as to model how this factor affects sediment
dissolution and deposition. Removing water away from the system
is possible with water evaporation.

Currently my system does not allow flow beyond the terrain bound-

Algorithm 1 Forward erosion simulation

while step < stepNumber do
for all locations in the Height Map do

Determine the total amount of water to be removed from current location (Figure 2)

for all lower neighbors do

Calculate acceleration of water to be moved to that lower neighbor (Equation 2)

Calculate velocity of water to be moved (Equation 3)

Move the appropriate part of water from current location to this neighbor (Equation 5)

Calculate sediment capacity of the moved water (Equation 7)

Deposit or dissolve sediment carried by the moved water to destination cell if needed (Equations 9 and 11)

end for
Slow down water in the current cell (Equation 6)

Calculate sediment capacity of water in the current cell (Equation 7)

Deposit some sediment of current cell if needed (Equation 9)

end for
Water evaporation and distribution (Equation 13)
end while

= OpenGlIl Viewer H=ES

OGpenGLviewer. M=1ES

Figure 5: Buggy result for not randomizing the processing sequence of spatial locations. Initial (left), Final (right)

ary. A possible future work is to allow this to happen. Also, at one
simulation step the water levels, water flow to lower neighbors have
to be completed. There may be room for some techniques to allow
frames in-between to be interpolated. For the interactive display,
the use of interpolated tetrahedral mesh as described in [Stuetzle
et al. 2009] looks to provide an even better visualization with a low
cost and is worth a try.

Additional Information

This is an individual project. It takes me around 50 hours to finish
this work.

References

ANH, N. H., SOURIN, A., AND ASWANI, P. 2007. Physically
based hydraulic erosion simulation on graphics processing unit.
In GRAPHITE ’07: Proceedings of the 5th international confer-
ence on Computer graphics and interactive techniques in Aus-
tralia and Southeast Asia, ACM, New York, NY, USA, ACM,
257-264.

BENES, B., AND FORSBACH, R. 2002. Visual simulation of hy-
draulic erosion. Journal of WSCG 10, 79-86.

HENGL, T., AND REUTER, H. I. 2008. Geomorphometry: con-
cepts, software, applications. Elsevier Science.

O’CALLAGHAN, J. F., AND MARK, D. M. 1984. The extraction of
drainage networks from digital elevation data. Computer Vision,
Graphics, and Image Processing 28, 323-344.

PERSISTENCE OF VISION RAYTRACKER, 2008. POV-Ray.
http://www.povray.org, (retrieved Apr 7, 2010).

STUETZLE, C. S., CHEN, Z., PEREZ, K., GROSS, J., CUTLER,
B., FRANKLIN, O., AND ZIMMIE, T., 2009. Segmented height
field and smoothed particle hydrodynamics in erosion simula-
tion.

TARBOTON, D. G. 1997. A new method for the determination of
flow directions and upsloe areas in grid digital elevation models.
Water Resources Research 33, 2 (February), 309-319.

NA DA b

Figure 6: Simulation result of the scene staircase2d. Initial (left), In-between (middle), Final (right)

Figure 7: Simulation result of the scene noise. Initial (left), In-between (middle), Final (right)

Figure 8: Simulation result of the scene pools. Initial (left), In-between (middle), Final (right)

