
Procedural Generation of Dynamic Terrestrial Simulacra

Data Structures, Vector Algebra, and the Creative Process

Steve McKinney

Rensselaer Polytechnic Institute

Inspiration

"Space," it says, "is big. Really big. You just won't believe how vastly hugely mindbogglingly big
it is. I mean you may think it's a long way down the road to the chemist, but that's just peanuts

to space, listen..."

-Douglas Adams, A Hitchhikers Guide to the Galaxy

 Using technology to envision the far reaches of space is certainly far from a new idea in
the field of computer graphics. For years computer-generated images of the cosmos have been
produced for scientists and Discovery Channel viewers alike. However a somewhat recent trend
in computing referred to as “Procedural Generation” has paved the way for a whole new way of
imagining the final frontier. Procedural generation allows programmers to produce vast
amounts of content, which is created solely through the use of algorithms rather than being
manually assembled. With the proper coding and the right sets of rules it is possible to generate
iterations of just about anything.

 While procedural generation has been around
for quite a while(fractals are a good example), it
wasn’t until 2005 that I took notice of the concept. At
2005’s Game Developers Conference industry legend
Will Wright revealed the first details of his new game:
Spore. Wright touted the game as a living, breathing
galaxy filled with unique creatures, planets, and
architecture. While the game would go on to be
panned by critics and fans alike, Spore was very
successful in demonstrating the power of procedural
generation. Wright’s behemoth boasted thousands

and thousands of unique planets, all generated on the
fly using procedural generation.

 Now, the creator of The Sims isn’t the only one
harnessing the power of procedural generation. What really
influenced me to do this project was the work of Flavien
Brebion, a single programmer building a galaxy sized game in
his spare time. Briebon’s magnum opus, Infinity: The Quest
for Earth, will allow players to traverse and colonize an entire
galaxy of procedurally generated content. Though the project
is still in alpha, Briebon’s accomplishments are already quite
impressive. Having seen footage of the game in action, I
decided I should try my own hand at building planets albeit

on a much smaller scale.

Will Wright's Spore in Action

Infinity: The Quest for Earth

About Planet Processor

Planet Processor is a series of algorithms designed to mould a simple sphere into a
unique planetary body. My program takes a set of specifications from the user, and feeds those
specifications into a series of functions which appropriately shape, size, and color the new
planet. Save for a few persistent features, such as polar ice caps, each planet produced is
completely different from the one before. Planet processor can produce planets of varying
sizes, densely or sparsely populated landmasses, and various different climates. The user may
choose to dictate the specifications of these features, or generate a completely random planet.

Algorithms

 To achieve my goals with this project I crafted a series of functions which determine the
ultimate configuration of each planet. Specifically I relied on trigonometric functions for the
planet coloring, and a mesh-traversal algorithm to sculpt the surface.

 My coloring algorithm is a fairly simple yet effective setup. A piecewise function is
applied to the entire sphere, with each vertex’s distance from the equator.

 As the figure above demonstrates, depending on a vertex’s relation to the equator it will
be colored very differently. The desert equator regions are assigned a color which is a factor of
the cosine function and the position within the region. Similarly the grassy areas are linearly
assigned colors based on their position on the sphere. Finally the polar regions are assigned a
white/blue gradient to signify an ice covering or permafrost.

 The coloring system is dynamic as well. The user can at any time adjust the relative heat
of the planet. Increasing the heat shrinks the polar regions and gradually widens the sandy
desert regions. With enough increase in heat the planet soon resembles a molten rock. Similarly
the planet can be cooled back to its original state, or cooled further which leads to the
expansion of the arctic regions.

Arctic Coloring (random)

Grassland Coloring (linear)
minDesert Color

maxDesert Color

Y

 I also used a series of mesh traversal schemes to elevate certain portions of the sphere
and therefore serve as landmasses. The surfaceBuilder function selects a triangle at random,
then it is made sure the current triangle is underwater, and the extruded triangles expand in a
circular fashion. There is also a chance that the direction of the landmass creation will change,
allowing for uniquely shaped continents. The user has the option of determining a factor
between 0 and 10 which will dictate how long this traversal runs, and therefore determine the
size and abundance of dry land.

 Once the continents are unearthed, the new “continent triangles” are randomly
selected to be elevated to mountains. The exposed land is randomly tweaked so as to not
appear unnaturally spherical.

Pitfalls

Often the hardest part of this project was
determining my best next step. I was faced with so
many options for expansion, however each new
feature added many new bugs to the project as a
whole. Ultimately I had to sacrifice a more complex
final product, for one that actually worked as
intended

Conclusion

This project thoroughly challenged my programming skills. I spent roughly 40 man hours on the
project and received no outside assistance besides the code provided by Professor Cutler et al.
through the homework assignments.

A Pointy South Pole, the result of adding mesas

