Jello Simulation

Roy Wellington Ben Boeckel
May 12, 2010

Contents

1 Abstract

2 Motivation

3 Previous Work

4 Algorithm
4.1 Core mass-spring algorithm
4.2 Mesh definitions
4.3 Spring connections
4.4 Point-in-mesh

5 Results
5.1 Performance
52 Challenges
5.3 Backend Library oo

6 Future Work
6.1 Performance Enhancements
6.2 SKins
6.3 MPIL

6.4 Magic constants

7 Availability

11
11
11
12

12
12
13
13
13

13

1 Abstract

Jello is an attempt at simulating realistic 3D movement similar to the prop-
erties of Jello. The project attempts to replicate the jiggle motion of Jello
through a three-dimensional mass-spring model, whereby various point masses
are connected by springs.

2 Motivation

Jello is one of those materials that is just interesting, and its movement fas-
cinates the eye. Jello, and Jello-like materials, can have various applications
— from modelling the snack-time favorite to making a horrific blob monster,
providing a believable simulation of a gelatinous material could add realism
and a sense of attention to detail. Further, accurately modelling the move-
ment of a large or complex gelatinous object could be difficult or tedious.

3 Previous Work

Mass-spring models have been used previously in producing realistic cloth.

4 Algorithm

4.1 Core mass-spring algorithm

Our core algorithm to deal with the simulation is based on the algorithm we
used in our cloth simulation homework. First, each of the points’ positions are
updated according to its velocity and then the velocities are updated using
the points’ acceleration. After this is done, the acceleration is then updated
using the forces on the point. This involved doing the spring calculations
using the spring formula:

neN;
i = L 1
“ m; ()

where k is the spring constant, N; is the set of all “neighbor” points (those
points connected to this point by springs)Ad, ,, is the displacement between

the current distance and original distance between points ¢ and its nth neigh-
bor, J is the damping factor, v; is the velocity of the point, m; is the mass
of the point. Points are defined as being neighbors of each other depending
on the input. The various input data accepted are discussed below. Once all
of the new forces are calculated, a few corrections are made. The spring cal-
culations are parallelized using OpenMP. This doubled the amount of points
we were able to simulate in real time. It also allows our simulation to scale
across multiple core machines with ease.

We iterate over every point in the Jello mesh and for each of its neigh-
bors, we do Provot correction as described in (Provot, 1995). This involves
adjusting the positions of points along the spring to ensure that they are
not too short nor too long. The amount that the spring is allowed to be
out outside of the original spring length, 7, is a configurable fraction of the
original spring length.

Unfortunately, the weight of the Jello is too much for any sane k. To
avoid this, we assume that there are springs between all points when doing
the Provot correction. Although incorrect, it results in a believable looking
Jello simulation.

While calculating the Provot corrections, we also do hit detection with
the ground (assumed to be at the y = 0 plane in our demo) and corrected
so that the velocity in the y direction is 0 and the velocities in the x and z
dimensions are multiplied by a factor, i, to simulate a coefficient of friction.
In addition, the acceleration in the y direction is slowed by a factor v. In our
simulations, we currently use a p of 0.1 and a v of 0.2.

v; = po,i+ p k (2)

a, = a; — va;,j (3)

The Provot correction loop is run multiple times until the displacements
done are minor. Our tests indicated that 5 loops was sufficient.

4.2 Mesh definitions

Jello meshes can be defined multiple ways. We support generating a ran-
dom field of points inside of an area, creating a volumetric mesh from a
surface mesh, and a custom file format that define points and springs for the
simulation.

The random points can be generated so that they are distributed uni-
formly within the field or using a distribution which concentrates them along
the edges of the field. By concentrating points at the edges, we allow the
faces of the field to be better defined. The edge distribution we use is:

1+ Co;(27m) (4)
where n is a value in the range [0,1). When given a surface mesh, we gener-
ate points within the mesh (the algorithm that determines whether a random
point is inside the mesh is below). These points are then passed along the
spring connection algorithms. Using VTK!, we support many file formats,
including, but not limited to PLY and OBJ. Our custom file format needs
no further processing before being handed off to the spring connection algo-
rithms.

4.3 Spring connections

We offer three ways to connection points in the mesh with each other, an
“implicit”, a marching tetrahedron, and another which uses a Delaunay tetra-
hedralization algorithm provided by the VTK toolkit.

The “implicit” connection algorithm uses a kd-tree structure to store
all of the points in the mesh and then defines that a point’s neighbors are
those within a radius r. We use a BSD licensed library? as our kd-tree
implementation which we then wrap for ease of use. We then query the
kd-tree for points that are within radius r of the vertex in question and
then connect them together with springs. This results in strongly connected
meshes and seems to perform the best out of all of our spring connection
methods. A downside is that it creates highly-connected meshes which slows
down the force calculations.

An algorithm loosely based on the marching tetrahedrons partitions the
mesh’s bounding box into a grid of cubes, each cube divided into several
tetrahedra, as in the marching tetrahedra algorithm. If the various endpoints
of the tetrahedra are found to be inside the mesh, then the edges of those
tetrahedra are added as springs.

When using Delaunay tetrahedralization, we first clean up the input so
that no two points are too close to each other since this would cause there to

http://vtk.org
2http://code.google.com/p/kdtree

http://vtk.org
http://code.google.com/p/kdtree

<

Figure 1: Collision with an edge, grazing mesh

Z

<

Figure 2: Collision with an edge, crossing mesh

be very narrow degenerate tetrahedrons. Another degenerate form is where
the input points form a uniform grid since there are many points that lie on
the circumsphere of tetrahedrons.

4.4 Point-in-mesh

In order to generate a mass-spring structure for the Jello movement algo-
rithm, it was necessary to be able to test if a point was inside or outside
a mesh. A simple algorithm for this test is to shoot a ray in any direction
from the point in question, and count the number of times you intersect the
mesh. As long as the mesh is well-formed (no loops or self-intersections), if
the number of intersections is odd, then the point is inside the mesh.

This algorithm works well in theory, however, its implementation is diffi-
cult. Within a mesh composed of triangles (such as ours, and almost any 3D
model), problems arise if the ray goes through a vertex or a triangle’s edge.
If this happens, the implementation must look at the surrounding edges to
see if it is actually crossing the mesh. Figures 1 and 2 demonstrate this with
edges, similar problems arise with vertices.

To make this work in practice, it is considerably easier to run the algo-
rithm in a 1D perspective. This algorithm, in 2D, is counting the number

Figure 3: A 1D contour example. The original 2D contour is shown, and the
point of interest is the open circle. Here, it is inside the mesh.

of times a ray crosses a 2D contour, or a polygon. In 1D, you can think of
a number line, with the mesh being points along this line, and our point of
interest also being on the line.

The 2D contour is a cross section of our 3D mesh, in any plane (for
convenience, we choose zy), and the 1D contour is a cross section of our 2D
contour. Thus, we can boil our 3D mesh down to a 2D contour, then to a
1D contour, and then run the algorithm.

The advantage of getting this 1D projection is that in 1D, the edge cases
we experience in 3D are non-existent. Effectively, we handle these edge cases
as we move from 3D to 1D.

Generation of a 2D contour is relatively easy, and boils to a few simple
cases. For each triangle:

1. at’s complete above or below the plane of interest — ignore it.

2. it’s intersecting the plane completely (2 vertices on 1 side, 1 on the
other) — find the segment on the triangle where it intersects. This is
a line, and is part of your contour.

3. a edge of the triangle is in the plane — choose one side of the plane
(use the same side for all the triangle). If the point is on that side of
the plane, then use the edge, otherwise, ignore it.

4. the triangle lies in the plane — make a 2D contour from the triangle
itself, and run a subtest wit this 2D contour, but only if points on the
mesh’s surface count. (This is a case where the point is neither inside
or outside, but on the mesh.)

The same algorithm works in 2D, and will generate a 1D contour. (Seg-
ments on a number line.) Note that working with meshes formed from

7

Figure 4: 2D Contour of the Stanford Bunny at z = 0.75

Figure 5: 1D Contour of the Stanford Bunny at y = 0.5

Use Ignore

/\ \/ Plane of interest

Figure 6: Algorithm case: Triangle is grazing the plane with an edge.

Ignore Ignore

N - Plane of interest

Figure 7: Algorithm case: Triangle is grazing the plane with a vertex.

Use Use

\/ //\\ Plane of interest

Figure 8: Algorithm case: Triangle intersects plane.

Ignore Ignore

N

Plane of interest

AN

Figure 9: Algorithm case: Triangle isn’t near plane.

10

floating-point data, or generating a 2D contour with floating point data,
often results in a disconnected 2D contour, due to floating point rounding.
It is often necessary to stitch the resulting 2D contour together to form a co-
herent 2D contour. It is worth mentioning that this algorithm will correctly
handle concave meshes, and meshes with “bubbles”.

5 Results

5.1 Performance

Our Jello simulation looks like real Jello, but it not very efficient. On one
test machine, we achieved 18 timesteps per second with a distribution of 600
points using the edge-favoring distribution in Equation 4. Each timestep
was 0.01s, for a total of 1s of simulation. This was using the implicit spring
connections within a cube a meter to a side, a connection radius r of 0.3, a
damping factor § of 0.8kg -s™!, a tolerance 7 of 0.1%, one Provot correction
loop, a spring stiffness k of 2N - m™!, a coefficient of friction x of 0.1, and a
acceleration factor when hitting the floor v of 0.2. The simulation ran on an
AMD Opteron quad-core processor running at 2.21 GHz. The simulation is
extremely CPU-bound and RAM usage was negligible at around 77 MiB.

5.2 Challenges

We also found that without a few hacks that our simulations didn’t quite
work. The first is that if Provot correction correction is only done between
points with actual springs between them, they are not strong enough to hold
the Jello up. Our spring constant and mass calculations are also not very
true to the actual physical constants. They work fine when we use Provot
correction between all points, but are entirely insufficient when only actual
spring connections are considered. Our models tended to fall onto the floor
and then spread out across it with these values.

Also, like most mass-spring models, constant values must be chosen care-
fully. If the values for spring constants, masses, and some physical constants
like gravity are not carefully chosen, the simulation can end up melting into
a pool of vertices or flinging itself into oblivion.

Our physics when the model hits the floor is one of the most hackish
parts of the code. We do not have a normal force which pushes back into

11

Figure 10: Bunny to Infinity

the model so we cannot actually simulate a bounce off of the table with the
current implementation. The friction is, however, necessary since without it,
our model would slowly rotate and move across the surface of the table, not
unlike a slug.

5.3 Backend Library

A fair portion of the code dealing with three dimensional manipulations,
inclusion testing, etc., can be easily siphoned off of this project into a side
library. The portions of the code relevant to general computer graphics
have been informally named “libacg” (advanced computer graphics) by the
developers. It includes code for managing 3D points, matrices, and even
some of the basic mesh loading, point inclusion testing, and mesh algorithms
could be potentially separated into this library. The code follows modern
C++ development principles, and aims to be easy to use.

6 Future Work

6.1 Performance Enhancements

Spring force calculation is done from the perspective of points, meaning that
for a particular spring, it is calculated twice, once from each side. These
calculations should be cached, in order to only perform them once.

12

6.2 Skins

Some code exists within the project to allow the layering of a mesh over the
Jello spring structure. This would allow a mesh to be attached to the mass-
spring structure, adding visual form to the model, and allowing a user to
more easily see the Jello itself. This is fairly straight forward for many forms
of the Jello, such as the model based off the marching tetrahedra algorithm:
the spring structure itself is derived from mesh data, so the mesh already
exists.

6.3 MPI

Currently, OpenMP allows the code to run in parallel over multiple CPUs
within the same machine. While this is useful, for larger simulations, more
CPU power may be needed, especially since the simulation itself is CPU
bound. MPI would allow the simulation to be spread among many machines,
using multiple machines and multiple processors to boost speed. Note that
only intra-timestep calculations can be done in parallel, since timestep ¢ + 1
depends on the output of timestep t — thus, two machines can’t be doing
timesteps t; and t, in parallel.

6.4 Magic constants

Much work needs to be done on many of the constants within the program.
Many of the constants in use currently are used because they look visually
appealing. Research into the actual constants of Jello has been done, and it is
our hope to bring the constants in the program in line with the actual physical
constants that could be measured in the real world. Currently, gravity is set
to —9.8m - s~2, matching the real world constant. The spring constant and
density however, do not closely match. Research on the Internet indicated
that Jello had a density of 1141 kg - m™ and that it had a spring constant
of 606 N -m™1.

7 Availability

Our code is licensed under the BSD license and available via a git clone
git://cledwyn.benboeckel.net/rpi/jello.git or via the gitweb inter-
face at http://cledwyn.benboeckel.net/git?p=rpi/jello.git.

13

http://cledwyn.benboeckel.net/git?p=rpi/jello.git

List of Figures

1

w N

= © 00 O O W~

Collision with an edge, grazing mesh
Collision with an edge, crossing mesh
A 1D contour example. The original 2D contour is shown, and
the point of interest is the open circle. Here, it is inside the

2D Contour of the Stanford Bunny at 2 =0.75
1D Contour of the Stanford Bunny at y =05
Algorithm case: Triangle is grazing the plane with an edge. . .
Algorithm case: Triangle is grazing the plane with a vertex.

Algorithm case: Triangle intersects plane.
Algorithm case: Triangle isn’t near plane.
Bunny to Infinity

14

References

X. Provot. Deformation constraints in a mass-spring model to describe rigid
cloth behavior. In W. A. Davis and P. Prusinkiewicz, editors, Graphics In-
terface 95, pages 147-154. Canadian Human-Computer Communications
Society, 1995. URL citeseer.ist.psu.edu/provot96deformation.html.

15

citeseer.ist.psu.edu/provot96deformation.html

	Abstract
	Motivation
	Previous Work
	Algorithm
	Core mass-spring algorithm
	Mesh definitions
	Spring connections
	Point-in-mesh

	Results
	Performance
	Challenges
	Backend Library

	Future Work
	Performance Enhancements
	Skins
	MPI
	Magic constants

	Availability

