
A Procedural Shader Language for Ray-Tracing Applications
Kristoffe Zehr

Advanced Computer Graphics final project

Abstract

Describes the implementation of a simple
language for describing shaders using procedural
graphics for a simple ray-tracer. Including color
textures and bump-maps. The ray-tracer and
procedural graphics functions are implemented in
C++, and are called using Lua scripts.

1 Introduction

Procedural graphics is the process of
generating 3D models or textures using
mathematical functions rather than storing them in
memory. It has several advantages over traditional
methods of storing graphics. Firstly, textures can be
very high resolution without the need to store a
large texture in memory, since it is generated on the
fly. A texture function takes in a position as an
argument and returns a scalar or color value, so
there is no need to map a texture to a complex
surface. This eliminates distortion and artifacts on
the texture.

Traditionally, procedural shaders have only
been used in real-time applications. GLSL is one
example of a shader language which can create
textures and bump-maps in real time using the
GPU. The goal of this project is to apply the
advantages of procedural shaders to the more
accurate rendering of a ray-tracer to create very
interesting images.

2 Previous Work

This project makes heavy use of the simplex
noise function described by Ken Perlin. N-
dimensional noise can be determined by mapping
pseudo-random gradients to each integer point on a
grid, and then interpolating the values of the 2n

closest gradients. This algorithm is described in
[Perlin 1985] and then improved upon in [Perlin
2002].

In addition to the simplex noise function,
this project also makes use of the turbulence
function described in [Perlin 1985]. Which takes

Figure 1: An image rendered using shaders, demonstrating
procedural textures and bump mapping.

the sum of multiple noise functions. It is described
by the equation:

Where p is a vector representing the position of the
point in space, and i=1,2,3,...n. Where n is the
number of noise functions to sum.

3 Implementation

In order to ensure that the shader language
does not cause significant performance drops, the
ray tracer and the procedural functions were both
implemented in C++.

3.1 Bump Mapping

In order to implement bump mapping, I
decided to use a shader function which takes in a
vector representing a point in 3D space and returns
a scalar value representing the “height” of that
point. A procedure written in the C++ portion of the
program then calls this shader function 6 times.
Each time off-setting the position along one axis
and determining the gradient for that axis. The
equation for the new normal offset u for a given
point [x,y,z] is:

Where ε is a very small value by which the points
are offset. The final normal vector is then the
original normal minus the unit vector of u.

The advantage to using a height map rather
than simply generating random unit vectors and
interpolating their values is due to the fact that the
simplex noise function is deterministic. For any
input, the noise function will always return the
same output. Therefore, the height map used when
generating a bump map can be calculated in other
parts of the shader program to create effects such as
corrosion on metal or oceans when generating a
planet texture.

3.2 The Shader Language

The decision of what language to use when
writing shaders had several important factors.
Firstly, the language must be extremely fast so that
there is minimal decrease in performance of the
ray-tracer. Secondly, it must be easily integrated
with C++ so that it can call C++ functions and be
run as a script from C++ programs with minimal
overhead. Finally, it must be a simple language that
is very easy to program in.

The language which I decided on using is
Lua. Lua is a fast, simple scripting language written
to the ANSI C standard. Therefore, it is easy to
integrate into C and C++ applications with the
provided API. It is one of the fastest, if not the
fastest, scripting languages provided for C, and is
extremely simple and powerful.

In order to integrate Lua with C++, the
functions callable from Lua must be written. Any
function that will be called from Lua must return an
integer and take only one parameter, a pointer to a
lua_State struct. In order to access the parameters,
the function must pop them off the top of the Lua
stack. After calculations are completed, the
function returns a value by pushing it onto the Lua
stack[Ierusalimschy 2006].

Since Lua is written in ANSI C, it does not

∑ 
noise  p∗2i



2i


height [x , y , z]−height [x− , y , z]


,

height [x , y , z]−height [x , y− , z]


,

height [x , y , z]−height [x , y , z−]



Figure 2: An example of a bumpy copper texture
with corrosion in the "pits" of the bump map.

always support dynamic linking of libraries.
Therefore, the functions written in C++ must be
pushed onto the Lua stack before any scripts are
run.

In order to specify what materials use
shaders in a mesh, the .obj file parser was updated.
When defining a material in an .obj file, the
prefixes “texture_shader”, “bump_shader”, and
“reflect_shader” can be used to define the
filenames of the diffuse color shader, bump map,
and reflective color shader, respectively. These
scripts are then loaded into the program and pushed
onto the Lua state. When the ray-tracer needs to
retrieve a normal vector or color value, it pushes
the position onto the Lua stack and runs the
appropriate function, then retrieves the value by
popping it off of the Lua stack[Ierusalimschy
2006].

4 Results
With the implementation of the shader

language, the ray-tracer does not show any
significant performance drops except when
rendering shaders with bump maps, as the height
map needs to be calculated 6 times for every ray
that intersects the surface. However, this is at worst
a constant drop in performance, with no additional
drops due to the complexity of the height map
function.

Using only the functions coded in the
application and the math functions provided in Lua,
many complex shaders can be developed. The ray
tracer allows the bump mapping effects to be
improved by adding realistic reflections to the
bumpy surface.

5 Conclusion and Future Work
Possible extensions to this project could

include adding improvements to the ray tracer such
as refraction and caustics, which would improve
the images greatly. Due to the procedural nature of
the textures involved, a radiosity solution would be
difficult to implement, since calculating the
average color of a patch would be a very complex
process. This could be avoided by simply allowing
the user to define an average color for the shader.

Additionally, adding more procedural
functions such as Voronoi diagrams or a brick
texture could improve the variety of shaders that
could be created. The ray-marching method of
hypertextures is also very well suited for
implementation in a ray-tracer. All that would be
necessary is modification of the hit detection code.
Hypertextures would not only improve the
appearance of a shader, but would also effect the
shape of the shadow cast by an object. Things such
as organic shapes in rock or clouds could be easily
implemented procedurally.

6 References
Ierusalimschy, Roberto. Programming in Lua. Rio

De Janeiro: Lua.org, 2006. Print.

Ken Perlin, An Image Synthesizer, ACM
SIGGRAPH Computer Graphics, v.19 n.3,
p.287-296, July 1985

Ken Perlin, Improving Noise, Proceedings of the
29th annual conference on Computer graphics
and interactive techniques, p.681-682, 2002

