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Abstract: 

 Our project aims to detect and subdivide the silhouette edges of triangle polygonal meshes. 

Such silhouetting is useful for character and object prototyping, and may be used to give 3D objects a 

sketched or cartoony feel. Furthermore, subdividing the entire mesh may be a very expensive operation, 

and the silhouette provides a good target for subdivision without dramatically increasing polygon count. 

 

Introduction: 

 Silhouetting is an important part of various subjects in computer graphics, including technical 

illustrations (Cole et al., 2008), line drawings (Judd, Durand and Adelson, 2007) and non-photorealistic 

rendering (NPR) (Hartner et al., 2003). Hertzmann and Zorin (2000) showed that such silhouetting can 

also be used to calculate shadow volumes. Such silhouettes can also have important applications in 

video games, where objects or characters may need to be quickly recognized (Mitchell, Francke, and 

Eng, 2007). Benichou and Elber (1999) define a silhouette edge as follows: 𝐸𝑖  is a silhouette edge if one 

of its two associated polygons is locally visible from the view vector 𝑉�⃑  and the other is locally invisible.  

A polygon is considered locally visible if the dot product between the view vector 𝑉�⃑  and the polygon 

normal 𝑁��⃑ < 0, and invisible if the dot product between the view vector 𝑉�⃑  and the polygon normal 𝑁��⃑  > 0. 

Such edges are extremely valuable since they provide significant cues to the objects shape. Note that 

these silhouette edges are view dependent, that is, changing the camera angle will change the set of  



silhouette edges. Silhouette edges have another interesting 

property, in that a chain of silhouette edges always form 

loops on watertight models. Thus, such chains can be 

followed along the model rapidly. 

 Subdivision is another important part of computer 

graphics, because it allows relatively low polygon count models to have higher polygon counts. This is 

useful for a variety of applications, including real time graphics on mobile devices (Hertzmann and Zorin, 

2000). However, on such restricted devices, subdividing the entire model may be costly and wasteful – 

because the silhouette provides the shape and feature curves of the surface, it may be better to simply 

subdivide the silhouette. Zorin and Hertzmann outline several constraints for a good subdivision 

scheme: Interpolation, Locality, Symmetry, Generality, Smoothness, and 

Simplicity. They present a modified butterfly subdivision scheme which can 

satisfy all these requirements. 

The butterfly subdivision scheme is simple to implement, but 

unfortunately can only work with vertices that have 6 edges (valence 6). 

Zorin and Hertzmann expand this algorithm to work on arbitrary valence 

meshes. Their subdivision scheme computes a new vertex for each edge 

midpoint of a triangle, weighing the position of the vertex based on the 

surrounding vertices. In the typical subdivision scheme, those other vertices 

of the polygons make the shape of a butterfly, hence the name. In the modified scheme, they consider 

additional polygons and edges for the weighing scheme which allows them to generalize the system for 

arbitrary valence meshes. 

Starting from the work of Zorin and Hertzmann (2000) and Wang et al, we present a method to 

rapidly subdivide silhouette edges by using a modified butterfly subdivision scheme. We only consider 

 

Figure i: Example of front-facing and back-facing 
polygons. (Hartner et al., 2003) 

 

 

Figure ii: An example of silhouette 
smoothing. (Wang et al., 2010) 



the boundary edge case in the Zorin and Hertzmann modified subdivision scheme which uses the weight 

of 4 points to generate new vertices and triangles and generalize that to our subdivision algorithm. 

 

Methods: 

 The algorithms were tested and compiled on Lenovo T410 laptops with a 2.53GHz dual-core 

processor with 4GB RAM and an Nvidia NVS 3100m GPU (512MB). The framework from the first 

assignment (Cutler, 2011) on Gouraud shading, mesh simplification, and subdivision was used and 

expanded to fit our needs. 

The silhouette edge detection was implemented by Florian. The first structure that was modified 

was the mesh code, as the silhouette edge detection needs to figure which edges are part of the 

silhouette in relation to the camera. The entire camera object (including viewing position and direction) 

was thus passed into the mesh code so that the silhouette edges could then be calculated. The 

algorithm then iterates through all edges and figured out which ones were silhouette edges. As 

mentioned previously, one face adjoining such edges have a normal which points towards the camera 

and the other has a normal which points away from the camera. It is thus simply a matter of comparing 

the position of the camera to the normal of the face using the dot product of those vectors. If the dot 

product is negative, the normal of the face is pointing in the opposite direction to the camera (a front-

facing polygon). If the dot product is positive, the normal of 

the face is in is the same direction as the camera (a back-

facing polygon). Once those edges are found, they need to 

be delivered in a useful format for silhouette subdivision. 

The simplest and easiest method to deliver those edges to 

be subdivided is by delivering a vector of vector of 

silhouette edges. Each vector contains a loop of contiguous 

Silhouette edge detection pseudocode: 

For each edge in the mesh 

 Get polygons of edge 

 Test if polygons are silhouette polygons 

 If they are, store edge in vector s 

While there are still silhouette edges in s 

 Go through all silhouette edges  

Find out which edges link together, 
deleting them from s 

 



silhouette edges. These vectors are themselves packed in a vector. 

The silhouette subdivision was implemented by Michael. It uses a modified butterfly subdivision 

scheme which only considers the two edges immediately adjacent to an edge in a loop of silhouette 

edges and uses those four vertices to calculate the position of a new vertex in the midpoint of the edge. 

The weights are as follows: 𝑣0 = − 1
16

, 𝑣1 = 9
16

, 𝑣2 = 9
16

, 𝑣3 = − 1
16

. The new triangles for the 

subdivision are then generated using the boundary edge case of the modified butterfly subdivision 

scheme. A new edge is made from the midpoint of the 

triangle to the opposing vertex if there is one silhouette 

edge. New edges are created to the center of the triangle if 

there are two or three silhouette edges. The edges are 

subdivided twice. The silhouette edges of the triangle are 

recalculated when the camera moves. 

Several other features were included to help 

visualize and debug the silhouette subdivision, 

implemented by both Florian and Michael. Silhouette edges 

can be visualized by pressing E. Gouraud shading is available 

and can be triggered using G. The mesh can be reset to its 

original state by pressing R. The program can be quit by pressing Q. The silhouette can be manually 

subdivided using M. Pressing P will subdivide the silhouette in real-time. Normally, a sharp crease of 

more than 90 degrees or more from one edge to another is considered a corner and is not subdivided in 

the regular manner. However, we have made this an option instead, as it looks better. Pressing V will 

force the algorithm to consider sharp creases and not subdivide those. 

  

Silhouette subdivision pseudocode: 

For each series of silhouette edges 

 For each edge 

 Find immediately adjacent edges 

 Check for sharpness (if needed) 

 Calculate point on edge based on 
adjacent silhouette edges 

 Store silhouette triangles and their 
silhouette edges 

For each triangle 

 If not a silhouette triangle, do not modify 

 Else subdivide appropriately 

Render triangles 



Results and Discussion: 

 Originally, the plan to detect silhouette edges was through a propagation algorithm, in which a 

single silhouette edge is detected. The algorithm then exploits the fact that 

silhouette edges must share additional silhouette edges and such chains of 

silhouette edges create loops, and would then follow that chain until a duplicate of 

one of the edges was detected. The advantage to such a method is that not all 

edges in the mesh would need to be tested. Unfortunately, such a method also has 

several drawbacks, including how to decide which silhouette edge to start at and 

detecting other silhouette edge chain loops (there might be several in a scene). 

Other silhouette edge algorithms were investigated from the paper “Object Space 

Silhouette Algorithims [sic]” (Hartner et al. 2003), but ultimately rejected due to 

implementation complexity or unsuitability with the subdivision scheme we would 

later use. 

Instead, a much simpler algorithm was implemented that could then be 

progressively refined. These chains of silhouette edges were then delivered in a 

vector that could easily be processed and visualized. Although the regular 

butterfly subdivision scheme requires all vertices of the mesh to have a degree 

of 6, the modified subdivision scheme can work with vertices of any degree. We 

only consider the boundary edge condition. This uses four vertices from three 

contiguous edges which are weighed to produce a new vertex in the center of the middle edge. 

Sharpness of edges can be dynamically considered using an on/off switch. Programming the entire 

assignment took about 20 hours. 

Several traditional computer graphics objects were rendered, along with simpler models used to 

debug our system. In a typical scene (for example, the 1k bunny), only 100-200 edges are silhouette 

 

Figure 2: Silhouette edge 
detection of 1000 face bunny. 

 

Figure 1: Exploiting loops. 
The model used is the 1000 
face bunny. 



edges (representing about 3-7% of all edges). Our simple examples are the sphere and cube, and for 

such scenes, our algorithm runs almost in real time 25-30 fps. Our medium difficulty examples are the 

200 polygon bunny. Our hard examples are the knot and the bunny, which both work well with the 

silhouette edge subdivision. Unfortunately, our algorithm pops when rotating the model in real time. 

This is normal and is due to the local remeshing around the silhouette edges, which may be 

discontinuous from frame to frame. Additionally, our algorithm cannot deal with saddle shaped 

structures such as the edges that make up the inside of a torus, because in such a case the entire saddle 

shape structure would be covered by the edges around it. Thus, a different weighing scheme would be 

required. 

Ultimately, we have implemented a silhouette subdivision scheme which is easy to use, has 

various tweakable parameters, and works well for low to medium polygon meshes, without incurring 

significant computational cost. In the future, we might improve our subdivision scheme by including the 

several other vertex weighing features in butterfly subdivision, and including a more intelligent 

silhouette edge detection algorithm, such as a propagation algorithm. We might also try to accelerate 

the underlying vector structures we used such that rendering time could be done much more quickly, so 

that the program would truly be in real time. 

 
Figure 3: On the left, the original cube model. In the middle, the silhouette edges of the cube have been 
subdivided, ignoring edge crease sharpness. On the right, the silhouette edges have been subdivided, but the edge 
crease sharpness is taken into account. 



  
Figure 4: Silhouette subdivision of the sphere. Although 
the model is fairly simple, the subdivision makes the 
sphere look round. 

Figure 5: Silhouette subdivision of the sphere. Due to 
the edges making up the silhouette edges in this 
particular view, the subdivision appears odd. 

  
Figure 6: Silhouette subdivision of the 200 polygon 
bunny. The bunny appears smooth even though the 
entire model has not been subdivided. 

Figure 7: Another view of the 200 polygon bunny. The 
bunny appears smooth from this angle as well, 
especially the ears, nose, and paws. 



 
Figure 8: Silhouette subdivision of the knot. The knot appears smooth after the subdivision, especially because 
many of its edges make up the silhouette. 
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