
Screen-Space Ambient Occlusion by Unsharp Masking of the Depth Buffer

Jay Chamberlin∗

Rensselaer Polytechnic Institute
Evan Sullivan†

Rensselaer Polytechnic Institute

Figure 1: Our SSAO implementation applied to a Siege Tank

Abstract

With the advent of the programmable graphics pipeline, it has be-
come possible to move expensive rendering processes to the GPU
for real-time computation. The demand for realistic real-time ren-
dering in games has led to the creation of GPU shaders that ap-
proximate global illumination. Our project is an implementation of
one such approximation known as screen-space ambient occlusion
(SSAO).

Keywords: screen-space ambient occlusion, unsharp mask, depth
buffer

1 Introduction

One approximation to global illumination used commonly in
production-quality renderings is ambient occlusion. Ambient oc-
clusion uses the assumption that areas surrounded by a lot of other
geometry will receive less light, making them darker. Normally,
this process is accomplished by checking for occlusions within
some hemisphere around a surface. SSAO approximates the pro-
cess by taking advantage of the depth buffer.

We have written an SSAO shader using a technique known as un-
sharp masking on the depth buffer. The process results in a cheap
and visually pleasing approximation of global illumination that is
invariant to scene complexity.

∗e-mail: chambj2@rpi.edu
†e-mail: sullie@rpi.edu

2 Related Work

In 2007, CryTek released a paper explaining several real-time ren-
dering algorithms they were considering for their next-gen engine,
CryEngine 2. One of these has come to be known as screen-space
ambient occlusion [Mittring 2007]. Their implementation of SSAO
on the 2007 video game Crysis was the first. Subsequently, the
effect was adopted by many other game developers and used in big-
budget games like Battlefield: Bad Company 2 (2010) and StarCraft
2 (2010). 2007 was also the year Shanmugam et al. described GPU-
accelerated ambient occlusion in their paper Hardware Accelerated
Ambient Occlusion Techniques on GPUs [Shanmugam and Arikan
2007].

Our implementation follows the algorithm outlined in Luft et al.s
2006 paper, Image Enhancement by Unsharp Masking the Depth
Buffer [Luft et al. 2006]. Luft et al. describe a method by which
3D scenes can be enhanced with an approximation to ambient oc-
clusion just by using the depth buffer. Our implementation differs
from Luft et al.s slightly in that we implement the whole algorithm
on a shader whereas they primarily worked on the CPU.

Since the introduction of these algorithms from 2006-2007, even
more advanced rendering techniques have been implemented in
screen space using the GPU. Of particular note is Approximating
Dynamic Global Illumination in Image Space by Ritschel et al. in
2009 [Ritschel et al. 2009]. This paper outlines methods for di-
rectional shadows and indirect color bleeding, as well as ambient
occlusion.

3 Implementation

All of our test scenes were rendered at a resolution of 1024x1024.
Our implementation of SSAO utilizes a two-pass technique to first
collect depth information about the scene and then use that infor-
mation to calculate the unshap mask to apply to the scene. Gath-
ering depth information from the depth buffer and storing it in a
texture can be done with existing OpenGL functionality. However,
processing that depth information to acquire an unsharp mask and
overlaying that mask on the scene required a customized shader.

Figure 2: Demonstration of darkening at the side clipping planes.

Our fragment shader, which can be seen in the Fragment Shader
section at the end of this document, is applied on the second pass
of our render. The depth texture that was rendered in the first pass
is sampled and averaged in a square with dimensions kernelDimen-
sion centered at the current fragment location. The larger the ker-
nelDimension used, the better the SSAO effect will appear due to
the averaging of more pixels depth values (Figure 3). The trade-off
here is performance. The larger the kernelDimension the longer the
shader will take to run due to the O(N2) performance of the averag-
ing procedure. There is also a drastic difference depending on the
hardware the shader is running on. With a kernelDimension of 15,
a frame rate of 1-2 fps can be achieved on an Nvidia Qadro NVS
140M. On an Nvidia GTX 460 with the same kernelDimension, the
frame rate was limited at 60 fps. Increasing the kernelDimension to
40 increased the render time to 5 seconds on the 140M, while the
460 was still being limited at 60 fps. On other machines we tested,
a kernelDimension of 40 would crash the display driver entirely.
Before we can use the depth values stored in the depth texture they
must be converted from the logarithmic scale, in which they are
originally calculated, to a linear scale:

DL =
(2.0 ∗N)

F +N − Z ∗ (F −N))
(1)

Where DL is the figurelinearized depth value, N and F are the near
and far clipping planes respectively, and Z is the logarithmic depth
value. Using this linearized value will result in a more consistent
effect regardless of the models position in the scene with respect to
the near and far clipping planes.

There are two checks which must be made before a neighboring
pixels depth is added to our average from the depth texture. First,
we must ensure that the neighbor we are trying to sample is actually
on in our viewing window, i.e. in the depth texture. Failure to make
this check will result in artifacts appearing when scene geometry is
moved to the edge of the viewing window (Figure 2). The second
condition that must be met before a neighboring pixels depth value
is included in our average is a simple locality check. If the differ-
ence between the depth value of the neighbor and that of the current
fragment is greater than the specified threshold value, that neigh-
bors depth value is not incorporated into the average. Without this
check in place, edges of the mesh that do not have scene geometry
close behind them show the effects of SSAO in undesirable ways,
either washing out the edges of the mesh, or highlighting edges that
shouldnt be. Figures 4 and 5 show examples of these situations.
In Figure 4 when pixels on the edge of the claw, which is not any-
where near the far clipping plane, are averaged with the other pixel
depths on the claw, everything is fine. However, when pixel depths
just off the claw at the far clipping plane, where the depth value is
at its maximum, the average will come out to be much larger than
it should. Subtracting this large average from the original depth on
the claw can result in a negative value on the unsharp mask, which,
when multiplied by 20, yields an even larger negative shade value
(quite likely smaller than negative 1). Since shade is subtracted
from the original pixel color, this operation effectively turns into
an addition of a very large value to the fragments color which gets
clamped to 1, a blown-out white that produces the results in the
second image of Figure 4.

Incorporating a depth difference threshold eliminates the issue of
averaging over the far clipping plane, and allows for averaging with
pixels that have a more modest depth difference. the third image
shows the threshold set to 0.1, allowing for the same SSAO ef-
fect around the mouth as seen in the second image, but none of the
blown-out white around the edges that the second image suffered
from.

Figure 5 shows another situation to be wary of with this fix. The
claw in the foreground is far enough from the body that the body
should not experience any noticeable occlusion due to the claw.
This achieves the opposite effect we were going for; such occlusion
makes it seem as though the claw is very close to the body, rather
than helping the viewer differentiate the depths of objects. This sort
of artifact is an unavoidable side-effect of this naive SSAO method;
you have to choose a range of valid neighboring depths and you
might encounter situations in which that range does not work. In
the situation in Figure 5, reducing the depth threshold value to .02
eliminated the undesirable shadowing of the body under the claw.

One restriction that is a result of this check is that scene geome-
try must be kept in the front (100-threshold*100)% of the scene,
otherwise the white-out effect will be observed. As the threshold
value is typicaly quite small, though, this is a minor limitation. We
never had a threshold value greater than 0.1 which restricted us to
the front 90% of the view frustum (hardly a restriction at all).

4 Results

Our algorithm yields pleasant results on all of the models we tested,
given that a few user-tewakable parameters have been correctly set.
Figure 3 below shows the difference between using a 15x15 kernel
(top) and using a 40x40 kernel (bottom). Both kernels accentuate
edges well enough that the distinction between close and far geom-
etry becomes more clear, but the size 40 kernel gives a subjectively
better result.

Looking under the chin of the bunny in the original images, there
is no distinguishable color change from the mouth to the chest. Us-

ing the size 15 kernel, it becomes easier to distinguish this depth
difference and easier still using a size 40 kernel. This effect is also
present at the transition from the top of the head to the right ear (our
left). The transition is not difficult to see in the original image, but
with SSAO applied, it becomes more distinct.

Figure 3: Left Side: Stanford Bunny with Gouraud shading, Top
Right: SSAO with kernelDimension = 15, Bottom Right: SSAO with
kernelDimension = 40.

Figure 4: Demonstration of a range of depth checking.

The Siege Tank above is a good demonstration of what our SSAO
effect looks like on complex geometry. The rear of the tank is uni-
formly shaded without SSAO, but has good distinction between the
treads and body with SSAO. Some subtle points of interest are the
rear of the turret, the stabilization mechanism, and the main gun.

5 Work Distribution

Our initial goals turned out to be much more ambitious than we
had time for. This simple method of unsharp masking of the depth
buffer was meant to be quickly completed by Jay to get a feel
for SSAO so we could move on to more advanced methods of
SSAO such as those described in [Shanmugam and Arikan 2007]

Figure 5: Demonstration of insufficient depth checking (see claw).

Figure 6: Siege Tank without SSAO (left) and with SSAO (right).

and [Ritschel et al. 2009]. Due to the difficulties he encountered
early on in the implementation of this method, after Evan created
the test scenes he decided to skip beginning the implementation of
described by Shanmugam et al. and assist Jay. We worked our way
through several major revisions of our code to get the depth texture
into the shader. The initial shader code was written by Jay, but Evan
found several critical errors including the need to linearize the depth
buffer values. We also experienced the joys of working on different
hardware and attempting to debug problems on one machine that
didnt exist on the other.

6 Conclusion

The performance we saw varied on different graphics cards as well
as based on the size of kernelDimension. Performance is also af-
fected by the resolution of the scene being rendered, athough we
did not test any resolutions other than 1024x1024. Scene complex-
ity did not play a significant role in the time it took our shader to
run. The Hydralisk (Figure 5) has just over 58 thousand polygons
and the time it took to apply our shader to it was similar to the
time it took to apply our shader to a one thousand polygon Stan-
ford Bunny. This is due to the nature of algorithms that operate in
screen-space. The algorithms run-time is linked with the number of
pixels on the screen.

It is feasible to run a simple screen-space ambient occlusion algo-
rithm by doing unsharp masking of the depth buffer on a graphics
card. The results attained through the use of our shader greatly
improves the shadowing effect along the edges of our test scenes.

There were more enhancements to this algorithm as described in
Luft et al. that we would like to implement in the future to improve
the ambient occlusion. They describe a way to remove the white
highlight along the edges where ambient occlusion occurs, which
is undesirable in some situations. In most of our test scenes we
felt the white highlight helped accentuate the effect, but there are
certainly some cases where it would be distracting.

Acknowledgements

We thank Michael Snyder for helping us debug a few problems with
our FBO code and SSAO shader.

Fragment Shader

varying vec3 normal;
varying vec3 position_eyespace;

uniform sampler2D depthValues;

const float kernelDimension = 15.0;
const float screenDimension = 1024.0;

float LinearizeDepth(vec2 uv)
{

float n = 2.0; // camera z near
float f = 15.0; // camera z far
float z = texture2D(depthValues, uv).x;
return (2.0 * n) / (f + n - z * (f - n));

}

void main()
{

float sum = 0;
int i = int(gl_FragCoord.x);
int j = int(gl_FragCoord.y);
int maxX = i + int(floor(kernelDimension/2.0));
int maxY = j + int(floor(kernelDimension/2.0));
float sampX;
float sampY;
float neighborCount = 0;

for (int x = i - int(floor(kernelDimension/2.0)); x < maxX; x++) {
for (int y = j - int(floor(kernelDimension/2.0)); y < maxY; y++) {

sampX = float(x) / screenDimension;
sampY = float(y) / screenDimension;
if (sampX >= 0.0 && sampX <= 1.0 && sampY >= 0.0 && sampY <= 1.0 &&

abs(LinearizeDepth(gl_FragCoord.xy/screenDimension) -
LinearizeDepth(vec2(sampX, sampY))) < 0.02) {

sum += LinearizeDepth(vec2(sampX, sampY));
neighborCount++;

}
}

}

vec3 color = vec3(1.0,1.0,1.0);
vec3 light = normalize(gl_LightSource[1].position.xyz - position_eyespace);
float ambient = 0.3;
float diffuse = 0.7*max(dot(normal,light), 0.0);
color = ambient * color + diffuse * color;

sum = sum / neighborCount;
float shade = 20 * (LinearizeDepth(gl_FragCoord.xy / screenDimension) - max(0.0, sum));
gl_FragColor = vec4(color,1.0) - vec4(shade, shade, shade, 1.0);

}

References

LUFT, T., COLDITZ, C., AND DEUSSEN, O. 2006. Image en-
hancement by unsharp masking the depth buffer. ACM Transac-
tions on Graphics 25, 3 (jul), 1206–1213.

MITTRING, M. 2007. Finding next gen: Cryengine 2. In ACM SIG-
GRAPH 2007 courses, ACM, New York, NY, USA, SIGGRAPH
’07, 97–121.

RITSCHEL, T., GROSCH, T., AND SEIDEL, H.-P. 2009. Ap-
proximating Dynamic Global Illumination in Screen Space. In
Proceedings ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games.

SHANMUGAM, P., AND ARIKAN, O. 2007. Hardware accelerated
ambient occlusion techniques on gpus. In Proceedings of the
2007 symposium on Interactive 3D graphics and games, ACM,
New York, NY, USA, I3D ’07, 73–80.

