
1 
 

A Better Ray Tracer 

David Cohen 

Advanced Computer Graphics 
Rensselaer Polytechnic Institute 

1. Introduction 
Ray tracing is a rendering method that produces 
very realistic results. It works by tracing rays 
from the camera through the scene in a manner 
that simulates light. Since the rays start at the 
camera instead of the light this is sometimes 
called backwards ray tracing. In its most basic 
form, ray tracing produces very believable 
results but there are some relatively simple 
additions that can drastically increase how 
realistic the results are. 

2. Refraction 
The addition of refraction is a good way to allow 
a ray tracer to produce more realistic and 
believable results. Refraction occurs when an 
incident ray intersects with an object that is 
transparent. This interaction is described by 
Snell's law: 

                

The   terms are the index of refraction of the 
materials,    is the material that the ray is 
coming from,    is the material that the ray is 
refracting into. The   terms are the angles 
between the incident and refracted rays and 
the normal at the point of intersection. 

Adding refraction to a ray tracer is relatively 
simple, although care must be taken to ensure 
that your math is correct. The equation for the 
direction of a refracted ray is shown below [1]: 

                         

In this equation,   is the direction of the 
refracted ray,   is the direction of the incident 
ray,   is the normal at the point of intersection, 
and         . Since we are solving for   and 

do not know   , we can use Snell's law to solve 
for the sine term and substitute the solution 
into the previous equation resulting in the 
following: 

                               

It is important to note that in the above 
equations the term under the radical may be 
negative, resulting in an imaginary refracted 
direction. When this occurs it is called total 
internal reflection. This can only occur when 
     . As the name suggests, this effect 
causes the light to reflect around the interior of 
the object and no refraction occurs. 

The final addition to improve realism was the 
inclusion of the Fresnel equations. When a ray 
of light is incident to a specular surface, the 
amount of light that is reflected ( ) and the 
amount that is refracted ( ) are dependent on 
the angle between the incident ray and the 
normal. These amounts are given by the 
following equations [1]: 

       
                      

     
  

              

The amount of reflected light usually depends 
on the polarization of the incoming light; 
however, most ray tracers do not polarize light 
so the two terms may simply be averaged. The 
two polarized terms are show below: 

        
               
               

 
 

 

        
               
               

 
 

 



2 
 

2.1 Results 
Figure 1 shows the results of adding refraction. 
The bending of light is visible at the edges of the 
glass bar. 

 

Figure 1. Refraction test image. 

3. Spatial Data Structures 
A good way to improve the realism of a scene is 
to add more detailed geometry. This is also a 
good way to ensure that your render takes ages 
to complete. A naive ray tracer must check 
every piece of geometry whenever a ray is cast 
through the scene and as such the rendering 
time is directly proportional to the amount of 
geometry. Spatial data structures offer an 
elegant method to solve this problem. They 
partition space and the geometry in that space 
in such a way that a ray only has to check 
against the geometry in the partitions that it 
crosses. Most spatial data structures have a pair 
of parameters to tune the performance, a limit 
to how many partitions there are, and a limit to 
how much geometry may be in a partition.  

A slight downside to using a spatial data 
structure is that it introduces some overhead 
since the ray must check if it intersects a given 
partition. This overhead is rather minimal, 
assuming the partition intersection check is 
efficient, and may be overlooked in very large 

scenes. The same can't be said for small scenes 
or improperly tuned structures, the partition's 
bound may end up being just one more thing to 
check for intersection. 

Kay and Kajiya introduce a fast method to check 
for ray-volume intersection in [2]. By 
representing the volume as a set of slab pairs 
the test for intersection becomes a couple of 
dot products, some multiplications and some 
divisions. If the normals for the slabs are 
constant then the dot products may be 
computed once for a ray and saved for 
following tests. 

3.1 Octree 
One common type of spatial data structure is 
the octree. The octree is a tree based structure, 
the volume that a node represents decreases as 
you move down the tree. The name comes from 
the fact that when a leaf is split due to having 
too much geometry, the volume it represents is 
evenly split along every dimension to produce 8 
child leaves. Octrees are often used due to their 
simplicity while still producing good results. 

A downside to octrees is that a node may 
encapsulate no geometry. Since a node is only 
split if it has geometry in it, a parent node can 
have up to 7 empty children. This causes some 
amount of inefficiency in terms of memory use. 
It also causes extra overhead when traversing 
the structure if you are not careful since the ray 
will check if it intersects this node even though 
doing so will not change the result. 

When implementing an octree it is important to 
consider geometry that spans across multiple 
nodes in the tree. If geometry is only stored at 
the leaf level then one object may be stored in 
many nodes, which is a waste of memory. To 
alleviate this, geometry can be stored at every 
level of the tree. This way, if an object is inside 
more than one node it may be stored a single 
time inside the parent node. 

3.2 KD-Tree 
Another common, tree based spatial data 
structure is the kd-tree. The name stands for k-



3 
 

dimensional tree. It is very similar to the octree 
except for how it splits. When a node in a kd-
tree is split it is split along one axis, producing 
two children. The axis can be chosen in many 
ways but it is usually chosen to be the longest 
axis represented by the node. The point along 
the chosen axis at which it splits if often chosen 
to be the midpoint. 

Like the octree, the kd-tree can also suffer from 
storing empty space. Unlike the octree, a kd-
tree will store at most one empty child per node 
since each node has only two children so the 
problem is not as severe. The same solution 
applies in regards to objects that span multiple 
nodes. 

3.3 Results 
Figure 2 shows how the addition of a spatial 
data structure can greatly reduce the time it 
takes to render a complex scene. The speedup 
compared to the naive ray tracer was about 3.3 
for the octree and about 3.8 for the kd-tree. 

 

Figure 2. Rendering time and speedup with a spatial data 
structure on a large scene. Left axis is time in hh:mm. 
Right axis is speedup. 

Figure 3 indicates that using a spatial data 
structure on a scene with a low amount of 
geometry can increase render time due to the 
extra overhead. 

 

Figure 3. Rendering time and speedup with a spatial data 
structure on a small scene. Left axis is time in m:ss. Right 
axis is speedup. 

4. Photon Mapping 
Basic ray tracing leaves out many complex 
lighting effects that can be seen in the real 
world. One such effect is the caustic. A caustic is 
produced when a specular object focuses light 
onto another surface. Another effect is global 
illumination where a surface may be receiving 
light indirectly from the light source. Photon 
mapping aims to simulate both of these effects. 
It works by tracing photons from light sources 
as they bounce around the scene. Whenever a 
photon strikes a surface it is recorded into the 
photon map. The map is then used when 
rendering a scene to look up how much indirect 
light a given point is receiving. 

It is important that the photons traced through 
the scene have an appropriate intensity. If the 
photons are too strong then the effects photon 
mapping aims to simulate will be overpowering, 
but if they are too weak then there may be no 
visible result. The power of a photon should 
depend on the power of the light emitting it, 
and how many photons that light is emitting [3]. 
If there are multiple lights in the scene then 
each light should emit a number of photons 
proportional to the strength of the light 
compared to the combined strength of all the 
lights. 

When gathering the indirect lighting it is 
necessary to find the nearest photons to the 

0.0

1.0

2.0

3.0

4.0

0:00

0:28

0:57

1:26

1:55

2:24

No SDS Octree KDTree

Render Times Speedup

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0:00.0

0:10.0

0:20.0

0:30.0

0:40.0

0:50.0

1:00.0

No SDS Octree KDTree

Render Times Speedup



4 
 

given point. Therefore it makes sense to store 
the photons in a structure like the kd-tree that 
allows for fast nearest neighbor lookup. 
Sometimes when gathering there will not be 
enough photons in the area which can produce 
fuzzy and incorrect caustics. It is suggested that 
a filter is used on all gathered photons to help 
smooth out the noise [3]. One such filter is the 
cone filter which assigns a weight to a photon 
based on its distance to the point that indirect 
light is being gathered for. The cone filter is 
defined by a filter constant,    .The weight, 
 , for a photon with a distance   from the 
gather point, with a gather radius   is given by 
the following equation: 

         

In order to normalize the result from the 
gathered photons, the result is divided by 
      . 

4.1 Simple Optimizations 
The addition of photon mapping can cause 
rendering times to skyrocket. Tracing the 
photons through the scene takes time 
proportional to the number of photons and 
how much geometry is in the scene and 
gathering indirect lighting can be very slow if 
you are trying to gather a large number of 
photons. Luckily, there are some simple 
optimizations that can provide significant 
increases in performance. 

The first optimization relates to the tree used to 
store the photons. Even though kd-trees are 
known for their very good nearest neighbor 
lookup, the actual performance depends heavily 
on how well balanced the tree is. If care is taken 
to balance the tree then performance gains as 
large as 50% may be seen [4]. To balance the 
tree, one could add all of the photons at once 
and when splitting a node choose the median 
along the split axis. This ensures that half of the 
photons will be on each side of the split, thus 
creating a balanced tree. 

The second optimization is to the gathering of 
indirect lighting. Since you want to find the n 
nearest neighbors to a point, some sorting will 

eventually need to be done. The naive approach 
is to sort everything you find but this is a poor 
choice since you may be sorting large numbers 
of photons. While gathering photons you are 
only interested in ones that meet certain 
criteria, such as the direction of that photon 
being within the hemisphere around the 
incident ray. Using these criteria you can cull 
the set of photons and greatly reduce the 
number of photons that need to be sorted. 

The third optimization is also the simplest 
optimization. Gathering photons involves 
sorting them by their distance to a point. 
Calculating this distance can be expensive due 
to the square root. Instead of calculating the 
distance to the point every time you compare 
two photons, it would be beneficial to compute 
the distance once and store it for future 
comparisons. 

4.2 Results 
Figure 4 shows the caustic formed by a 
reflective ring. 

 

Figure 4. Caustic caused by specular reflection. 

Figure 5 shows the caustic formed by a glass 
sphere. 



5 
 

 

Figure 5. Caustic caused by specular transmission. 

Figure 6 shows how changing the value of   in 
the cone filter affects the resulting caustic. 

 

Figure 6. The effect of varying the k in the cone filter. a = 
1.00, b = 1.25, c = 1.50, d=1.75, e=2.00, f=10.00. 

6. References 
[1] Bram de Greve. "Reflections and 

Refractions in Ray Tracing." November 13, 
2006. 

[2] Timothy L. Kay, James T. Kajiya. "Ray 
Tracing Complex Scenes." ACM Siggraph 
1986. 

 

[3] Wojciech Jarosz, Henrik Wann Jensen, Craig 
Donner. "Advanced Global Illumination 
Using Photon Mapping." ACM Siggraph 
2008. 

[4] Henrik Wann Jensen. "Rendering Caustics 
on Non-Lambertian Surfaces." Proceedings 
of Graphics Interface 1996. 

7. Other Images 

 

Figure 7. The scene used to create Figure 2. There are 
8000 spheres in the scene. 

 

Figure 8. The scene used to create Figure 3. There are 5 
spheres in the scene. 


