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Abstract 
Non-photorealistic rendering provides ways to 
take complex objects and show them in often 
simplified, but artistic ways. This paper presents 
a toon shader that works within real time, and 
allows the user to show the model in multiple 
styles. Our renderer finds the silhouette edges, 
based on the camera position, along with the 
border and crease edges of the model. We then 
highlight these edges by creating new geometry 
to outline them. Adding in our shader, we are 
able to create and experiment with multiple 
artistic styles. 
 
1 Introduction 
Photorealistic rendering is not always the best 
look for a project. Stylization is important for 
being able to get across the proper feel, and 
emphasize the parts which should be at the 
forefront. A game heavily rooted in Japanese 
mythology such as Okami is much better served 
by a rendering style emulating ink paintings 
than it would be by a gritty realistic setting. 
Non-Photorealistic rendering also has the 
advantage of being better able to avoid the 
uncanny valley, a place in which things are so 
close to real that all people can see are the 
differences. When there is less information put 
forward, there are fewer things to notice that 

could go wrong. It also allows for more 
emphasis and exaggeration when animating, as 
the models will not be constrained to what 
people know as the typical limitations. 

 
2 Related Works 
The area of Non Photorealistic Rendering has 
developed many different techniques, but the 
one common theme is that the results are 
usually artistic in some way. One of the most 
common goals is to take an image or model and 
produce an image that looks as if it had been 
done by an artist. Georges Winkenbach and 
David H. Salesin’s Computer-Generate Pen-and-
Ink Illustration discusses how to render a pen-
and-ink illustration using an automated 
rendering system. Michael P. Salisbury et al.’s 
Interactive Pen-and-Ink Illustration produces 
similar results; however they instead use a 
model and a library of stored stroke textures.  
 Lee Markosian et al.’s paper on Real-
Time Nonphotorealistic Rendering is concerned 
with rendering simplified pictures of complex 
objects. They manage to make it real-time by 
focusing on speed at the expense of accuracy 
and detail. Their results are basic outlines of the 
objects, but they are able to add different styles 
and textures to the lines, giving each of them a 
different type of feeling. 



 Amy Gooch et al’s A Non-Photorealistic 
Lighting Model For Automatic Technical 
Illustration takes objects and highlights the 
edges by adding lines, and expands on 
traditional shading techniques so that the 
results are a technical illustration you could find 
with any instruction manual. Their shaders can 
go from metal to phong with impressive results. 
 Although different parts of these works 
are similar, this paper will discuss how to create 
a toon shader by finding and creating new 
outlines by adding geometry to the model. 
 

3 Object/Image Space Algorithms 
It is important the difference between an object 
space algorithm and an image space algorithm. 
An image space algorithm uses the coordinate 
system of the image, usually using a system that 
is x pixels wide by y pixels high. The result is 
often some form of pixel map, and is found by 
determining which object is hit first by the 
projector when looking through each pixel. 

An objects space algorithm uses the 
coordinate system of the objects and its 
environment. Unlike with the image algorithm, 
the object algorithm’s results include the 
collection or objects and polygons that make up 
the scene. The outcome is determined by which 
parts of the objects are unobstructed by other 
objects or even itself. The correct color is then 
assigned. For this project, the object algorithm 
is used. 
 

4 Silhouette Edges 
Silhouette edge determination is carried out by 
analyzing each edge and its respective triangles 
with respect to the camera position. A 
silhouette edge has one adjacent face pointed 
towards the camera, while the other faces 
away. This can be obtained by analyzing the dot 
product of the face normal with the direction to 
the camera, producing the cosine of the angle 
between them. When one result is positive and 
the other negative, it is a silhouette edge.  
Each edge stores two Booleans to serve this; 
one to mark whether it is a silhouette edge, and 
one to mark whether the edge has been hit for 

analysis yet. Each pair of half-edges is analyzed 
in order to determine whether the edge is a 
silhouette, but each half-edge is stored 
individually. In order to prevent more analysis 
than necessary, both edges in the pair are 
marked as hit once they are analyzed so that 
when the second edge pops up while scanning 
through the hash table, things don’t get 
calculated an extra time.  
In order to obtain extra speed, the mesh stores 
the last known camera position, which is what 
gets used for silhouette edge determination. By 
comparing that to the current position and only 
calculating edges anew when there is a change, 
the idle state is simply sleeping when the 
camera is static, as opposed to carrying out 
constant calculations which always have the 
same result. 

 
5 Preprocess Edges 
Along with the silhouette edges, adding lines to 
show the border s and creases within the mesh 
is also important, and give more detail to the 
final output. To know which one should be 
marked, all the edges go through preprocessing 
to check whether or not they are a border or 
crease edge. 
 With the Half Edge data structure, it is 
simple to tell which of the edges are border 
edges. It edge is first checked to see whether or 
not it has an opposite, and if it doesn’t it is then 
marked as a border edge. 
 Figuring out which edges are crease 
edges is a bit more work. The best way to 
determine whether or not an edge is a crease 
edge is to find the angle between the two 
planes on either side of it. To do this, one first 
calculates the dot product of the two surface 
normals. The dot product is calculated by 
multiplying each corresponding variable and 
adding them all together, so every x value is 
multiplied together, and every y value, and then 
they are all added together. The resulting value 
is the magnitude of the two vectors, multiplied 
by the cosine of the angle between them, as 
shown below: 
 



n1 · n2 = ||n1|| ||n2|| cos 

 
Since it is only the angle that is needed, the 
next step is to first calculate the magnitude 
each vector by squaring each variable and 
adding them together. Finally the angle can be 
found by taking the inverse cosign of the dot 
product divided by the magnitudes. Then to get 
it in degrees, multiply it by 180 over pi: 
 

 = cos-1(n1 · n2 / ||n1|| ||n2||) * 180/ 
 

After that, the only thing left to be determined 
is the specific bounds for what qualifies as a 
crease edge. In this case, it starts at any angle 
less than 140 degrees, but can be shifted up and 
down to increase or decrease the number of 
edges and detail. 

 
Figure 1: Right to Left a) Model with very little detail b) 
Model with a lot of detail 

 

6 Shader 
The shader function is more of a 1-D texture 
due to a lack of occlusion detection. To 
calculate the proper shade for each triangle, the 
face normal is compared via dot product to the 
(initial) light position, and the resulting cosine is 
scaled into a 0-1 space, then compared to the 
values read in from the given text file. All values 
from one threshold up until the next are 
counted as being of that color value, resulting in 
linear interpolation. As there are no actual rules 
for the light affecting the colors, the rules may 
be broken, and the shades do not have to move 
from lightest to darkest. Each face stores the 
index of its correct value for the shade array, 
allowing for quick lookup when drawing the 
mesh. 

 
Figure 2: Displays problems with using the stencil buffer 
for each individual shade 

Occlusion testing is not implemented due to the 
difficulty of doing so with arbitrary shader 
arrays. For two shades with the threshold 
between them at 0.5, implementation would be 
exactly identical to that of shadow polygons, 
drawing everything in the first color and then 
using the stencil buffer to redraw everything as 
the second. However, this becomes more 
complex as more levels are added, especially 
ones with thresholds between 0 and 0.5. 
When the threshold is less than 0.5, drawing 
the lines between the current and next level will 
not capture everything which should be shaded. 
Figure 2 captures this, showing the lines drawn 
in the direction from the light source at the 
border between shades two and three in blue. 
The outside of the ellipsoid mesh is colored 
with what the shades should be at those places. 
It can clearly be seen that merely redrawing 
what is inside of the blue lines would miss the 
outsides of the mesh which should be shade 3, 
and they would end up improperly colored. A 
possible solution to this would be to begin by 
drawing everything in the shade at 0.5, and 
doing the algorithm in each direction of the 
slider, heading outwards in the “lighter” 
direction first in order to make sure everything 
turns “darker” properly when blocked from the 
light source’s view. These are the red lines of 
the same figure. However, this runs the risk of 
accidentally causing parts of the mesh closer to 
the camera to become lighter than they should 



be (or darker, if the “lighter” shades are instead 

 
Figure 3: Displays incorrect extra shading caused by 
skipping levels 

processed from 0.0 down to 0.5). A way to get 
around this would be to cheat, drawing all 
polygons shaded as stored up until 0.5, and 
using the stencil buffer for all values 0.5-1, but 
that may not be the desirable look depending 
on the shading gradient in the “lighter” region. 
There is also the problem of skipping levels. 
Depending on the complexity of the shader and 
topography of the model, there will not always 
be a clear and complete ring between each 
shade. One face may be at level 2 while its 
neighbor is at level 5. Attempting to create a 
ring between 2 and 3 would fail due to a gap at 
this edge. Simply drawing every division below 
the current shade will also fail, as illustrated in 
figure 3.The stencil buffer may get confused 
when drawing all the extra polygons, 
incrementing three times for divisions between 
(1,2), (2,3) and (3,4), but only decrementing 
once due to a division between (1,4). The 
ground plane in the example shown would end 
up being shaded darker for the given viewpoint 
due to the stencil buffer results despite the fact 
it is supposed to be fully lit. The solution would 
be that after drawing the model at shade 1, the 
buffer would then need to be run for all shades 
2-n. For each shade k, a complete ring would 
have to be constructed by marking all edges 
fulfilling the condition of being a border 
between a shade 1-(k-1) and a shade k-n.  
Regardless of the added complexity involved in 
solving extra problems with the stencil buffer, 
using the shader with the buffer for occlusion 

testing and shadows would result in a runtime 
of O(T * S), where T is the number of triangles 
in the model and S is the number of levels in the 
1D shader. This is because the entire mesh 
needs to be re-rendered for each new level of 
the shader to be added in properly. Given that 
not all of the possible shaders follow light-to-
dark rules and therefore would not make sense 
with shadows, and that looking up the shade for 
each triangle is O(1) if it is already being loaded 
to get drawn anyway, this has not been 
implemented. 

 
7 Rotation 
The rotation functionality was added in to help 
deal with lines that are pointed straight at the 
camera so that they are hardly visible. Ideally 
what should happen is that once found, these 
lines are rotated until they are perpendicular 
and can be seen perfectly fine by the camera. 
 To find the lines that are pointed 
straight at the camera, take the dot product of 
the vertex normal and the camera. The dot 
product of two vectors that are facing in 
opposite directions is 180 degrees, so once the 
dot product is found, those vertices that are 
closest to 180 are the ones pointing at the 
camera. These vertices are then marked. 
 The next step is to find a vector that is 
perpendicular to the normal by using the cross 
product. The first vector used is the vertex 
normal, but the second one can change 
depending on which direction the vector is 
going to be perpendicular to. To figure this out, 
first calculate which way the edge is going, by 
finding the difference between the position of 
the starting vertex and the ending vertex. If the 
biggest difference is in the x-direction, then it 
uses a vector like (0,1,0) or (0,-1,0) to have the 
results be perpendicular in the y-direction. 
Similar tests are also used for the y-direction 
and the z-direction. 
 Once the correct direction is found, it is 
time to calculate the cross product. To get the 
cross product, for each variable, you take the 
other variables and multiply them by the 



opposite from each vector and take the 
difference: 
 

v1 x v2 = (a2b3 – a3b2)x + (a3b1 – a1b3)y + 

(a1b2 – a2b1)z 

 
After finding the cross product, the new vector 
is stored at the vertex. If there is already a 
vector stored, the average between the two is 
found, and then doubled to make up for the 
difference. 
 Currently, this code works well on 
simple meshes, like the cube. It doesn’t work as 
well on more complex edges. For many of these 
edges, the angle between the two surface faces 
is too small, so that when the perpendicular 
normal is used, it disappears within the mesh. 
To try and make up for this, there is a check for 
these meshes, so when the angle is too small, it 
is left alone. Even with this however, many 
more checks and test would need to be run on 
each line to get the ideal output. 
 

8 Triangulation 
As the lines are being drawn as rectangles 
rather than using OpenGL’s line function, it 
would have been aesthetically pleasing to get 
the lines to taper off at the edges, such around 
the bunny’s leg, rather than existing as bricks. 
However, this has proved to be much more 
difficult than anticipated, and remains in a state 
not functioning as intended. 
Testing whether there are any other edges 
around each vertex of a line (and tapering if 
there are none) may work for pre-processed 
edges, but will always fail for silhouette edges 
as silhouettes are always present in complete 
rings. Additionally, facing direction of the edges 
cannot be checked because silhouettes are 
always marked consistently in regards to which 
face is not visible. For the silhouette outlining 
the model, this does not matter so much, but 
for inner silhouettes such as the folds of the 
bunny’s ear, tapering the lines would be 
desirable. Other methods which would  not 
work include checking which edge is closer to 
the camera, as the full outline may have similar 

situations and triangulate in undesirable 
locations, and checking the difference in angle 
from the center of each edge to the camera, 
because a sufficiently complex mesh such as the 
40k bunny will also fail this test for the full 
outline.  
The mesh does currently have some 
triangulating behavior, although the exact cause 
given the current code remains undetermined. 
The full outline always triangulates in the same 
direction, even when the edge marked as being 
a silhouette is flipped to the other half-edge in 
the pair. This results in a very odd look, but it 
can be interesting, such as on the 1k bunny 
when pre-processed sensitivity is turned all the 
way up. 
 

9 Success/Failure Cases 
There are a small number of failure cases aside 
from various algorithmic drawbacks discussed 
above. Meshes such as spheres soft or rounded 
edges tend not to produce perfectly smooth 
outlines, despite that being the nature of the 
original shape. Because the silhouette edges are 
determined based on the direction from the 
center of the face to the camera position, 
bringing the camera in very close can cause 
mistakes as the silhouette pulls inwards from 
the actual visible extremes of the mesh. Back 
faces are handled improperly by both line and 
shader; lines are drawn outwards from the 
normals at each vertex, causing back faces to 
have no visible lines, and shade is determined 
by the face normal, so the back of a face is 
exactly the same shade as the front. Finally, as 
an object-space outline shader, popping 
becomes noticeable in the silhouette edges as 
the mesh is moved, especially with thicker lines. 
The algorithm is most successful for objects 
with clear creases due to how pre-processed 
lines are calculated, and for high-poly meshes 
such as the 40k bunny, where thinner lines and 
fairly high sensitivity can begin to look like a pen 
sketch. 

 
 
 



10 Extras 
There is a debug mode available in the program 
to check which edges are being identified as 
what. It does the calculations for the current 
camera angle, and then can be rotated and 
seen from multiple perspectives without the 
silhouette edges getting recalculated. 
Silhouette edges are marked in red, while 
border and crease edges are noted in yellow.  
Whiteout mode renders all triangles as unlit 
white, and is useful for checking how successful 
a particular outline is, in addition to just looking 
good in some renders. 
There is also a line color randomizer function; 
when pressed, the line color the mesh is drawn 
with changes. It can be reset to the usual black.  
Line width can be incremented and 
decremented, as can the sensitivity of what 
counts as a pre-processed edge. 
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Figure 4: Two examples of Rotation working: The left side is without rotation and the right side is with rotation 

Figure 5: Triangulation: Left to Right a) Shows how interesting triangulation can look in certain cases despite being wrong  
b) Shows why triangulation is not working

 
Figure 6: Left to Right a) 8 level light to dark shader b) Breaking typical lighting conventions; light to dark is not required  
c) Shader with many close levels that makes a mesh look more complex than it actually is 
  



 
Figure 7: Failure Cases Left to Right: a) Supposedly smooth meshes do not always produce smooth edges b) Moving the 
camera too close causes errors as the silhouette moves in from the actual visible edge 3) Back Faces do not have outlines 
drawn and cause shading problems because face normals are what the shading is based on

Figure 8: Extras Left to Right a) High poly meshes with low line width kind of look like pen and ink sketches b) High line width 
and full preprocessing sensitivity can create an oil-dipped shiny look c) Debug Mode 

 


