

Object-Space Toon Shading

Lore Cox Mary DeVarney

Abstract
Non-photorealistic rendering provides ways to
take complex objects and show them in often
simplified, but artistic ways. This paper presents
a toon shader that works within real time, and
allows the user to show the model in multiple
styles. Our renderer finds the silhouette edges,
based on the camera position, along with the
border and crease edges of the model. We then
highlight these edges by creating new geometry
to outline them. Adding in our shader, we are
able to create and experiment with multiple
artistic styles.

1 Introduction
Photorealistic rendering is not always the best
look for a project. Stylization is important for
being able to get across the proper feel, and
emphasize the parts which should be at the
forefront. A game heavily rooted in Japanese
mythology such as Okami is much better served
by a rendering style emulating ink paintings
than it would be by a gritty realistic setting.
Non-Photorealistic rendering also has the
advantage of being better able to avoid the
uncanny valley, a place in which things are so
close to real that all people can see are the
differences. When there is less information put
forward, there are fewer things to notice that

could go wrong. It also allows for more
emphasis and exaggeration when animating, as
the models will not be constrained to what
people know as the typical limitations.

2 Related Works
The area of Non Photorealistic Rendering has
developed many different techniques, but the
one common theme is that the results are
usually artistic in some way. One of the most
common goals is to take an image or model and
produce an image that looks as if it had been
done by an artist. Georges Winkenbach and
David H. Salesin’s Computer-Generate Pen-and-
Ink Illustration discusses how to render a pen-
and-ink illustration using an automated
rendering system. Michael P. Salisbury et al.’s
Interactive Pen-and-Ink Illustration produces
similar results; however they instead use a
model and a library of stored stroke textures.
 Lee Markosian et al.’s paper on Real-
Time Nonphotorealistic Rendering is concerned
with rendering simplified pictures of complex
objects. They manage to make it real-time by
focusing on speed at the expense of accuracy
and detail. Their results are basic outlines of the
objects, but they are able to add different styles
and textures to the lines, giving each of them a
different type of feeling.

 Amy Gooch et al’s A Non-Photorealistic
Lighting Model For Automatic Technical
Illustration takes objects and highlights the
edges by adding lines, and expands on
traditional shading techniques so that the
results are a technical illustration you could find
with any instruction manual. Their shaders can
go from metal to phong with impressive results.
 Although different parts of these works
are similar, this paper will discuss how to create
a toon shader by finding and creating new
outlines by adding geometry to the model.

3 Object/Image Space Algorithms
It is important the difference between an object
space algorithm and an image space algorithm.
An image space algorithm uses the coordinate
system of the image, usually using a system that
is x pixels wide by y pixels high. The result is
often some form of pixel map, and is found by
determining which object is hit first by the
projector when looking through each pixel.

An objects space algorithm uses the
coordinate system of the objects and its
environment. Unlike with the image algorithm,
the object algorithm’s results include the
collection or objects and polygons that make up
the scene. The outcome is determined by which
parts of the objects are unobstructed by other
objects or even itself. The correct color is then
assigned. For this project, the object algorithm
is used.

4 Silhouette Edges
Silhouette edge determination is carried out by
analyzing each edge and its respective triangles
with respect to the camera position. A
silhouette edge has one adjacent face pointed
towards the camera, while the other faces
away. This can be obtained by analyzing the dot
product of the face normal with the direction to
the camera, producing the cosine of the angle
between them. When one result is positive and
the other negative, it is a silhouette edge.
Each edge stores two Booleans to serve this;
one to mark whether it is a silhouette edge, and
one to mark whether the edge has been hit for

analysis yet. Each pair of half-edges is analyzed
in order to determine whether the edge is a
silhouette, but each half-edge is stored
individually. In order to prevent more analysis
than necessary, both edges in the pair are
marked as hit once they are analyzed so that
when the second edge pops up while scanning
through the hash table, things don’t get
calculated an extra time.
In order to obtain extra speed, the mesh stores
the last known camera position, which is what
gets used for silhouette edge determination. By
comparing that to the current position and only
calculating edges anew when there is a change,
the idle state is simply sleeping when the
camera is static, as opposed to carrying out
constant calculations which always have the
same result.

5 Preprocess Edges
Along with the silhouette edges, adding lines to
show the border s and creases within the mesh
is also important, and give more detail to the
final output. To know which one should be
marked, all the edges go through preprocessing
to check whether or not they are a border or
crease edge.
 With the Half Edge data structure, it is
simple to tell which of the edges are border
edges. It edge is first checked to see whether or
not it has an opposite, and if it doesn’t it is then
marked as a border edge.
 Figuring out which edges are crease
edges is a bit more work. The best way to
determine whether or not an edge is a crease
edge is to find the angle between the two
planes on either side of it. To do this, one first
calculates the dot product of the two surface
normals. The dot product is calculated by
multiplying each corresponding variable and
adding them all together, so every x value is
multiplied together, and every y value, and then
they are all added together. The resulting value
is the magnitude of the two vectors, multiplied
by the cosine of the angle between them, as
shown below:

n1 · n2 = ||n1|| ||n2|| cos

Since it is only the angle that is needed, the
next step is to first calculate the magnitude
each vector by squaring each variable and
adding them together. Finally the angle can be
found by taking the inverse cosign of the dot
product divided by the magnitudes. Then to get
it in degrees, multiply it by 180 over pi:

 = cos-1(n1 · n2 / ||n1|| ||n2||) * 180/

After that, the only thing left to be determined
is the specific bounds for what qualifies as a
crease edge. In this case, it starts at any angle
less than 140 degrees, but can be shifted up and
down to increase or decrease the number of
edges and detail.

Figure 1: Right to Left a) Model with very little detail b)
Model with a lot of detail

6 Shader
The shader function is more of a 1-D texture
due to a lack of occlusion detection. To
calculate the proper shade for each triangle, the
face normal is compared via dot product to the
(initial) light position, and the resulting cosine is
scaled into a 0-1 space, then compared to the
values read in from the given text file. All values
from one threshold up until the next are
counted as being of that color value, resulting in
linear interpolation. As there are no actual rules
for the light affecting the colors, the rules may
be broken, and the shades do not have to move
from lightest to darkest. Each face stores the
index of its correct value for the shade array,
allowing for quick lookup when drawing the
mesh.

Figure 2: Displays problems with using the stencil buffer
for each individual shade

Occlusion testing is not implemented due to the
difficulty of doing so with arbitrary shader
arrays. For two shades with the threshold
between them at 0.5, implementation would be
exactly identical to that of shadow polygons,
drawing everything in the first color and then
using the stencil buffer to redraw everything as
the second. However, this becomes more
complex as more levels are added, especially
ones with thresholds between 0 and 0.5.
When the threshold is less than 0.5, drawing
the lines between the current and next level will
not capture everything which should be shaded.
Figure 2 captures this, showing the lines drawn
in the direction from the light source at the
border between shades two and three in blue.
The outside of the ellipsoid mesh is colored
with what the shades should be at those places.
It can clearly be seen that merely redrawing
what is inside of the blue lines would miss the
outsides of the mesh which should be shade 3,
and they would end up improperly colored. A
possible solution to this would be to begin by
drawing everything in the shade at 0.5, and
doing the algorithm in each direction of the
slider, heading outwards in the “lighter”
direction first in order to make sure everything
turns “darker” properly when blocked from the
light source’s view. These are the red lines of
the same figure. However, this runs the risk of
accidentally causing parts of the mesh closer to
the camera to become lighter than they should

be (or darker, if the “lighter” shades are instead

Figure 3: Displays incorrect extra shading caused by
skipping levels

processed from 0.0 down to 0.5). A way to get
around this would be to cheat, drawing all
polygons shaded as stored up until 0.5, and
using the stencil buffer for all values 0.5-1, but
that may not be the desirable look depending
on the shading gradient in the “lighter” region.
There is also the problem of skipping levels.
Depending on the complexity of the shader and
topography of the model, there will not always
be a clear and complete ring between each
shade. One face may be at level 2 while its
neighbor is at level 5. Attempting to create a
ring between 2 and 3 would fail due to a gap at
this edge. Simply drawing every division below
the current shade will also fail, as illustrated in
figure 3.The stencil buffer may get confused
when drawing all the extra polygons,
incrementing three times for divisions between
(1,2), (2,3) and (3,4), but only decrementing
once due to a division between (1,4). The
ground plane in the example shown would end
up being shaded darker for the given viewpoint
due to the stencil buffer results despite the fact
it is supposed to be fully lit. The solution would
be that after drawing the model at shade 1, the
buffer would then need to be run for all shades
2-n. For each shade k, a complete ring would
have to be constructed by marking all edges
fulfilling the condition of being a border
between a shade 1-(k-1) and a shade k-n.
Regardless of the added complexity involved in
solving extra problems with the stencil buffer,
using the shader with the buffer for occlusion

testing and shadows would result in a runtime
of O(T * S), where T is the number of triangles
in the model and S is the number of levels in the
1D shader. This is because the entire mesh
needs to be re-rendered for each new level of
the shader to be added in properly. Given that
not all of the possible shaders follow light-to-
dark rules and therefore would not make sense
with shadows, and that looking up the shade for
each triangle is O(1) if it is already being loaded
to get drawn anyway, this has not been
implemented.

7 Rotation
The rotation functionality was added in to help
deal with lines that are pointed straight at the
camera so that they are hardly visible. Ideally
what should happen is that once found, these
lines are rotated until they are perpendicular
and can be seen perfectly fine by the camera.
 To find the lines that are pointed
straight at the camera, take the dot product of
the vertex normal and the camera. The dot
product of two vectors that are facing in
opposite directions is 180 degrees, so once the
dot product is found, those vertices that are
closest to 180 are the ones pointing at the
camera. These vertices are then marked.
 The next step is to find a vector that is
perpendicular to the normal by using the cross
product. The first vector used is the vertex
normal, but the second one can change
depending on which direction the vector is
going to be perpendicular to. To figure this out,
first calculate which way the edge is going, by
finding the difference between the position of
the starting vertex and the ending vertex. If the
biggest difference is in the x-direction, then it
uses a vector like (0,1,0) or (0,-1,0) to have the
results be perpendicular in the y-direction.
Similar tests are also used for the y-direction
and the z-direction.
 Once the correct direction is found, it is
time to calculate the cross product. To get the
cross product, for each variable, you take the
other variables and multiply them by the

opposite from each vector and take the
difference:

v1 x v2 = (a2b3 – a3b2)x + (a3b1 – a1b3)y +

(a1b2 – a2b1)z

After finding the cross product, the new vector
is stored at the vertex. If there is already a
vector stored, the average between the two is
found, and then doubled to make up for the
difference.
 Currently, this code works well on
simple meshes, like the cube. It doesn’t work as
well on more complex edges. For many of these
edges, the angle between the two surface faces
is too small, so that when the perpendicular
normal is used, it disappears within the mesh.
To try and make up for this, there is a check for
these meshes, so when the angle is too small, it
is left alone. Even with this however, many
more checks and test would need to be run on
each line to get the ideal output.

8 Triangulation
As the lines are being drawn as rectangles
rather than using OpenGL’s line function, it
would have been aesthetically pleasing to get
the lines to taper off at the edges, such around
the bunny’s leg, rather than existing as bricks.
However, this has proved to be much more
difficult than anticipated, and remains in a state
not functioning as intended.
Testing whether there are any other edges
around each vertex of a line (and tapering if
there are none) may work for pre-processed
edges, but will always fail for silhouette edges
as silhouettes are always present in complete
rings. Additionally, facing direction of the edges
cannot be checked because silhouettes are
always marked consistently in regards to which
face is not visible. For the silhouette outlining
the model, this does not matter so much, but
for inner silhouettes such as the folds of the
bunny’s ear, tapering the lines would be
desirable. Other methods which would not
work include checking which edge is closer to
the camera, as the full outline may have similar

situations and triangulate in undesirable
locations, and checking the difference in angle
from the center of each edge to the camera,
because a sufficiently complex mesh such as the
40k bunny will also fail this test for the full
outline.
The mesh does currently have some
triangulating behavior, although the exact cause
given the current code remains undetermined.
The full outline always triangulates in the same
direction, even when the edge marked as being
a silhouette is flipped to the other half-edge in
the pair. This results in a very odd look, but it
can be interesting, such as on the 1k bunny
when pre-processed sensitivity is turned all the
way up.

9 Success/Failure Cases
There are a small number of failure cases aside
from various algorithmic drawbacks discussed
above. Meshes such as spheres soft or rounded
edges tend not to produce perfectly smooth
outlines, despite that being the nature of the
original shape. Because the silhouette edges are
determined based on the direction from the
center of the face to the camera position,
bringing the camera in very close can cause
mistakes as the silhouette pulls inwards from
the actual visible extremes of the mesh. Back
faces are handled improperly by both line and
shader; lines are drawn outwards from the
normals at each vertex, causing back faces to
have no visible lines, and shade is determined
by the face normal, so the back of a face is
exactly the same shade as the front. Finally, as
an object-space outline shader, popping
becomes noticeable in the silhouette edges as
the mesh is moved, especially with thicker lines.
The algorithm is most successful for objects
with clear creases due to how pre-processed
lines are calculated, and for high-poly meshes
such as the 40k bunny, where thinner lines and
fairly high sensitivity can begin to look like a pen
sketch.

10 Extras
There is a debug mode available in the program
to check which edges are being identified as
what. It does the calculations for the current
camera angle, and then can be rotated and
seen from multiple perspectives without the
silhouette edges getting recalculated.
Silhouette edges are marked in red, while
border and crease edges are noted in yellow.
Whiteout mode renders all triangles as unlit
white, and is useful for checking how successful
a particular outline is, in addition to just looking
good in some renders.
There is also a line color randomizer function;
when pressed, the line color the mesh is drawn
with changes. It can be reset to the usual black.
Line width can be incremented and
decremented, as can the sensitivity of what
counts as a pre-processed edge.

11 References
[1] Real-Time Nonphotorealistic Rendering
 Lee Markosian et al., 1997

[2] Computer-Generated Pen-and-Ink
Illustration
 Georges Winkenbach and David H. Salesi,
 1994

[3] Stylized Rendering Techniques for
Scalable
 Real-Time 3D Animation
 Adam Lake, et al.

[4] X-Toon: An Extended Toon Shader
 Pascal Barla, Joeelle Thollot, Lee
Markosian

[5] Non-Photorealistic Rendering
 Anna Vilanova

[6] A Non-Photorealistic Lighting Model For
 Automatic Technical Illustration
 Amy Gooch et. al.

[7] Interactive Pen-and-Ink Illustration
 Michael P. Salisbury et al.

Figure 4: Two examples of Rotation working: The left side is without rotation and the right side is with rotation

Figure 5: Triangulation: Left to Right a) Shows how interesting triangulation can look in certain cases despite being wrong
b) Shows why triangulation is not working

Figure 6: Left to Right a) 8 level light to dark shader b) Breaking typical lighting conventions; light to dark is not required
c) Shader with many close levels that makes a mesh look more complex than it actually is

Figure 7: Failure Cases Left to Right: a) Supposedly smooth meshes do not always produce smooth edges b) Moving the
camera too close causes errors as the silhouette moves in from the actual visible edge 3) Back Faces do not have outlines
drawn and cause shading problems because face normals are what the shading is based on

Figure 8: Extras Left to Right a) High poly meshes with low line width kind of look like pen and ink sketches b) High line width
and full preprocessing sensitivity can create an oil-dipped shiny look c) Debug Mode

