
Advanced Rendering for Augmented Reality on Mobile Devices 
Griffin Milsap 
Eric Bourland 

 

Abstract 
Augmented reality on mobile devices was until 
recently only implemented with simple 
rendering techniques. We set out to add shader 
support to AndAR, the ARToolkit based 
Augmented Reality package for Android. In 
particular, we hoped to implement approximate 
environment mapped reflections and image 
space refractions.

 

Introduction 
Augmented Reality (AR) is an amazing step 
forward in virtual reality technology.  AR 
seamlessly meshes rendering of synthetic 
images into live video feeds through the aid of 
computer vision algorithms and rendering 
frameworks.  An object can be rendered on top 
of a positional location indicator (often called a 
marker) which can relate important information 
about the camera’s location relative to the 
marker through its projected representation on 
the video feed.  AR is still a new technology, so 
the majority of research is focused on locating 
and tracking the marker with higher precision. 
 Unfortunately, AR research doesn’t often 
explore issues with the renderings themselves. 
 Reflective and refractive objects which reflect 

and refract their environment have not been 
well explored and present some interesting 
technical issues that this project will explore.  It 
is the focus of this paper to implement a 
method for approximating reflection and 
refraction in augmented reality renderings 
without any extra external data from the 
environment but the video feed. 
In order to effectively perform reflective and 
refractive renderings in realtime, it is necessary 
to use a GPU and graphics library capable of fast 
shader support.  Due to the nature of AR, it is 
preferable to render using the camera and 
screen of a mobile device due to portability and 
ease of use.  As such, the Android platform was 
chosen for implementing this technology. 
  Android’s ARToolkit based augmented reality 
package (AndAR [2]) is an existing software 
platform which runs on Android based mobile 
devices and is the subject of modification for 
this purpose.  
AndAR does not currently support OpenGL ES 
2.0, which is the updated version of OpenGL for 
embedded systems. ES 2.0 includes shader 
support, cube mapping, and other extensions to 
OpenGL. We set out to add some of the 
features of GLES2.0 to AndAR. In particular, we 
hoped to implement shaders for reflection and 
refraction, to fully take advantage of the 
graphics hardware in many mobile devices. For 
reflection, we used GL cube maps and 
environment mapped our objects. For 
refraction, we used an approximate image 
space refraction algorithm. AndAR is currently 
able to process the image fed to it from the 
device camera, find a specific marker placed in 
the scene, and calculate the transformation 
matrix required to render an object at the 
marker’s location and orientation. We explore 



methods of adding additional interactive effects 
to the object rendered. 

Reflection 
Rendering reflection in an augmented reality 
environment presents a very important 
problem.  Information about the environment 
behind the camera is not available in the image 
and must be simulated effectively (read. faked). 
 The process described in [1] by Ropinski et. al. 
is used to generate a cube map which can be 
used for rendering environment based effects.   
To render a reflective object, three operations 
must occur. First, the object’s approximate 
screen space bounding box (SSBB) must be 
calculated. Next, the background image is 
segmented and rendered to a cube map 
texture. Finally, rays are fired from the camera 
per fragment to the object and are bounced at 
the cube map to find the appropriate fragment 
color. 

Approximate Screen-Space Bounding Box 
The algorithm described by Robinski et. al. 
assumes an accurate, axis-aligned object space 
bounding box (AABB). We apply the object’s 
final transformation matrices to said AABB 
which entirely encloses the model to be 
rendered, then the screen space minima and 
maxima are calculated.  This minimum (x,y) and 
maximum (x,y) constitutes the screen space 
bounding box (SSBB). 

This algorithm doesn’t necessarily return an 

exact bounding box, as depending on the shape 
of the actual object, the most conservative 
screen space bounding box may actually be 
smaller.  For example, a sphere rotated 45 
degrees will have a smaller SSBB than this 
method produces. 

 
For our application, however, this approximate 
SSBB is adequate and yields massive 
performance enhancements. 

Constructing the Cube Map 
After finding the SSBB, we scale it up slightly 
and clamp it to certain screen boundaries as 
described in Ropinski’s algorithm.  We then find 
the midpoints of the lines from the corrected 
SSBB and the corners of the image.

 

We then split the screen into the quads created 
by these lines and the two rectangles. The 
image contained by each of these quads is the 
image used for the sides, back, top and bottom 
of our cube map.



 The outer remains of the image are used to 
fabricate an approximation of the front face. 
 The texture coordinates are calculated for each 
of these faces individually, and geometry is 
generated which is then rendered directly into 
the cube map face texture via a framebuffer 
object.  The front face consists of the outer 
border of the image cut into “n” triangles and 
arranged into one solid face.

  This method essentially folds the cube map 
around the SSBB. Because GL triangulates all 
quads, the trapezoidal shapes created by this 
algorithm do not texture uniformly. 

 
In order to correct this issue, the quads need to 
be assigned all four texture coordinates, instead 
of just the standard two. In this fashion, the 
texture can be treated as a projective texture 
and the artifact produced above can be 
removed.  This method looks better, but is still 
incorrect in that the texture appears to be 
extending off into space but is actually all on 
the same plane. However, since the original 
texture is taken from an image that actually is 
extending off into space in most cases, our cube 
map should not be too adversely affected. 

  As it turns out, the actual textural artifacts 
caused by this non-uniform texture mapping is 



not visible unless under close scrutiny.  These 
corrections should result in a negligible 
performance decrease, but the implementation 
complexity did not merit their inclusion in the 
final product.  

Reflecting in the Fragment Shader 
When the cube map has finally been 
constructed, we calculate the ray from the eye 
position to the object and reflect it about the 
normal interpolated across the face. GL returns 
the color at the point where the reflected ray 
intersects the cube map, and this color is 
assigned to the object at that fragment. 

Results 
 The process produces this result at about 3 FPS 
on a Motorola Droid (1.0) phone, 12 FPS on the 
Nvidia Harmony Tegra 2 development kit (in 
debug mode), and 60 FPS on the Motorola 
Xoom tablet. The Motorola Xoom is the new 
Android 3.0 tablet which is built on top of the 
Nvidia Tegra 2 GPU/SOC.

 

 

 

 

Refraction 
We attempted to implement Wyman’s 
algorithm for image-space refraction [3]. First, 
the ray from the camera to the object is 
calculated, and the approximate width of the 
object at that point is determined.  Refraction 
occurs at both entry into and exit from the 
model which results in a very accurate result. 

Approximating the Refracted distance 
To find a rough estimate of the image’s width 
inside of a shader, we render the image twice. 
The first pass, we reverse the depth test so 
farther faces are rendered and save the depth 
buffer to a texture. The second pass, we correct 
the depth test and save the depth buffer to 
another texture. Then, by subtracting these two 
texture values from each other we can find the 
approximate depth of the object at that point. 



We did not further approximate this depth by 
using the distance along the normal to 
interpolate, although this yields more accurate 
results.  

Refraction in the shader 
After constructing a cube map, we calculate the 
ray from the eye position to the object and 
refract it about the normal interpolated across 
the face using an index of refraction of 1.2. The 
refracted ray travels the distance calculated by 
our approximation, and then refracts back. GL 
returns the color where the ray intersects the 
cube map and this color is assigned to the 
object at that fragment. 

Results 
Our performance for this shader was similar to 
our reflection shader. However, due to the 
complexities involved with working on an 
embedded environment, our depth texture 
renders could not be configured properly, and 
would always fill entirely with solid black. There 
were several issues involved with depth 
textures that we explored, none of which ended 
up solving the problem. It is undefined behavior 
to write to a texture and read from it 
simultaneously, which we were doing 
inadvertently. It also causes severe 
performance issues to bind a framebuffer 
object (used to render depth textures) after 
doing any drawing to the screen on some 
devices, an issue we later corrected. 
Furthermore, many GL texture generation 
settings that are valid on PC implementations 

are not supported on embedded devices, and 
using them will crash the program. Due to time 
constraints, we could not get this multi pass 
method to work.  

Conclusion 

Despite the frustration caused by depth buffer 
rendering on a mobile device, reflection ended 
up producing moderately convincing results at 
interactive rates. Shader support and other 
updated features of GLES2.0 were successfully 
added to AndAR and they should be generally 
applicable to most meshes. Further work would 
hopefully get depth textures to render properly. 

It took roughly a combined 100 hours to 
complete the project as it stands now. Griffin 
did the majority of the reflection and cube map 
code, and the updating of AndAR to GLES2.0 
functionality. Eric did the first drafts of the 
shaders, and the refraction code, with Griffin 
tweaking and updating as necessary. Both 
group members spent most of their time 
debugging. This is unfortunately how 
embedded graphics development works. 



Profiling tools such as Nvidia’s PerfHUD ES 
which allow a look at the deep inner workings 
of the OpenGL implementation were invaluable 
in debugging these issues. 

Project source code can be found on the 
andarshaders google code page. 
http://code.google.com/p/andarshaders 

A demo video can be found here. 
http://www.youtube.com/watch?v=8cr5SLu0
2U0 
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