
Advanced Rendering for Augmented Reality on Mobile Devices
Griffin Milsap
Eric Bourland

Abstract
Augmented reality on mobile devices was until
recently only implemented with simple
rendering techniques. We set out to add shader
support to AndAR, the ARToolkit based
Augmented Reality package for Android. In
particular, we hoped to implement approximate
environment mapped reflections and image
space refractions.

Introduction
Augmented Reality (AR) is an amazing step
forward in virtual reality technology. AR
seamlessly meshes rendering of synthetic
images into live video feeds through the aid of
computer vision algorithms and rendering
frameworks. An object can be rendered on top
of a positional location indicator (often called a
marker) which can relate important information
about the camera’s location relative to the
marker through its projected representation on
the video feed. AR is still a new technology, so
the majority of research is focused on locating
and tracking the marker with higher precision.
 Unfortunately, AR research doesn’t often
explore issues with the renderings themselves.
 Reflective and refractive objects which reflect

and refract their environment have not been
well explored and present some interesting
technical issues that this project will explore. It
is the focus of this paper to implement a
method for approximating reflection and
refraction in augmented reality renderings
without any extra external data from the
environment but the video feed.
In order to effectively perform reflective and
refractive renderings in realtime, it is necessary
to use a GPU and graphics library capable of fast
shader support. Due to the nature of AR, it is
preferable to render using the camera and
screen of a mobile device due to portability and
ease of use. As such, the Android platform was
chosen for implementing this technology.
 Android’s ARToolkit based augmented reality
package (AndAR [2]) is an existing software
platform which runs on Android based mobile
devices and is the subject of modification for
this purpose.
AndAR does not currently support OpenGL ES
2.0, which is the updated version of OpenGL for
embedded systems. ES 2.0 includes shader
support, cube mapping, and other extensions to
OpenGL. We set out to add some of the
features of GLES2.0 to AndAR. In particular, we
hoped to implement shaders for reflection and
refraction, to fully take advantage of the
graphics hardware in many mobile devices. For
reflection, we used GL cube maps and
environment mapped our objects. For
refraction, we used an approximate image
space refraction algorithm. AndAR is currently
able to process the image fed to it from the
device camera, find a specific marker placed in
the scene, and calculate the transformation
matrix required to render an object at the
marker’s location and orientation. We explore

methods of adding additional interactive effects
to the object rendered.

Reflection
Rendering reflection in an augmented reality
environment presents a very important
problem. Information about the environment
behind the camera is not available in the image
and must be simulated effectively (read. faked).
 The process described in [1] by Ropinski et. al.
is used to generate a cube map which can be
used for rendering environment based effects.
To render a reflective object, three operations
must occur. First, the object’s approximate
screen space bounding box (SSBB) must be
calculated. Next, the background image is
segmented and rendered to a cube map
texture. Finally, rays are fired from the camera
per fragment to the object and are bounced at
the cube map to find the appropriate fragment
color.

Approximate Screen-Space Bounding Box
The algorithm described by Robinski et. al.
assumes an accurate, axis-aligned object space
bounding box (AABB). We apply the object’s
final transformation matrices to said AABB
which entirely encloses the model to be
rendered, then the screen space minima and
maxima are calculated. This minimum (x,y) and
maximum (x,y) constitutes the screen space
bounding box (SSBB).

This algorithm doesn’t necessarily return an

exact bounding box, as depending on the shape
of the actual object, the most conservative
screen space bounding box may actually be
smaller. For example, a sphere rotated 45
degrees will have a smaller SSBB than this
method produces.

For our application, however, this approximate
SSBB is adequate and yields massive
performance enhancements.

Constructing the Cube Map
After finding the SSBB, we scale it up slightly
and clamp it to certain screen boundaries as
described in Ropinski’s algorithm. We then find
the midpoints of the lines from the corrected
SSBB and the corners of the image.

We then split the screen into the quads created
by these lines and the two rectangles. The
image contained by each of these quads is the
image used for the sides, back, top and bottom
of our cube map.

 The outer remains of the image are used to
fabricate an approximation of the front face.
 The texture coordinates are calculated for each
of these faces individually, and geometry is
generated which is then rendered directly into
the cube map face texture via a framebuffer
object. The front face consists of the outer
border of the image cut into “n” triangles and
arranged into one solid face.

 This method essentially folds the cube map
around the SSBB. Because GL triangulates all
quads, the trapezoidal shapes created by this
algorithm do not texture uniformly.

In order to correct this issue, the quads need to
be assigned all four texture coordinates, instead
of just the standard two. In this fashion, the
texture can be treated as a projective texture
and the artifact produced above can be
removed. This method looks better, but is still
incorrect in that the texture appears to be
extending off into space but is actually all on
the same plane. However, since the original
texture is taken from an image that actually is
extending off into space in most cases, our cube
map should not be too adversely affected.

 As it turns out, the actual textural artifacts
caused by this non-uniform texture mapping is

not visible unless under close scrutiny. These
corrections should result in a negligible
performance decrease, but the implementation
complexity did not merit their inclusion in the
final product.

Reflecting in the Fragment Shader
When the cube map has finally been
constructed, we calculate the ray from the eye
position to the object and reflect it about the
normal interpolated across the face. GL returns
the color at the point where the reflected ray
intersects the cube map, and this color is
assigned to the object at that fragment.

Results
 The process produces this result at about 3 FPS
on a Motorola Droid (1.0) phone, 12 FPS on the
Nvidia Harmony Tegra 2 development kit (in
debug mode), and 60 FPS on the Motorola
Xoom tablet. The Motorola Xoom is the new
Android 3.0 tablet which is built on top of the
Nvidia Tegra 2 GPU/SOC.

Refraction
We attempted to implement Wyman’s
algorithm for image-space refraction [3]. First,
the ray from the camera to the object is
calculated, and the approximate width of the
object at that point is determined. Refraction
occurs at both entry into and exit from the
model which results in a very accurate result.

Approximating the Refracted distance
To find a rough estimate of the image’s width
inside of a shader, we render the image twice.
The first pass, we reverse the depth test so
farther faces are rendered and save the depth
buffer to a texture. The second pass, we correct
the depth test and save the depth buffer to
another texture. Then, by subtracting these two
texture values from each other we can find the
approximate depth of the object at that point.

We did not further approximate this depth by
using the distance along the normal to
interpolate, although this yields more accurate
results.

Refraction in the shader
After constructing a cube map, we calculate the
ray from the eye position to the object and
refract it about the normal interpolated across
the face using an index of refraction of 1.2. The
refracted ray travels the distance calculated by
our approximation, and then refracts back. GL
returns the color where the ray intersects the
cube map and this color is assigned to the
object at that fragment.

Results
Our performance for this shader was similar to
our reflection shader. However, due to the
complexities involved with working on an
embedded environment, our depth texture
renders could not be configured properly, and
would always fill entirely with solid black. There
were several issues involved with depth
textures that we explored, none of which ended
up solving the problem. It is undefined behavior
to write to a texture and read from it
simultaneously, which we were doing
inadvertently. It also causes severe
performance issues to bind a framebuffer
object (used to render depth textures) after
doing any drawing to the screen on some
devices, an issue we later corrected.
Furthermore, many GL texture generation
settings that are valid on PC implementations

are not supported on embedded devices, and
using them will crash the program. Due to time
constraints, we could not get this multi pass
method to work.

Conclusion

Despite the frustration caused by depth buffer
rendering on a mobile device, reflection ended
up producing moderately convincing results at
interactive rates. Shader support and other
updated features of GLES2.0 were successfully
added to AndAR and they should be generally
applicable to most meshes. Further work would
hopefully get depth textures to render properly.

It took roughly a combined 100 hours to
complete the project as it stands now. Griffin
did the majority of the reflection and cube map
code, and the updating of AndAR to GLES2.0
functionality. Eric did the first drafts of the
shaders, and the refraction code, with Griffin
tweaking and updating as necessary. Both
group members spent most of their time
debugging. This is unfortunately how
embedded graphics development works.

Profiling tools such as Nvidia’s PerfHUD ES
which allow a look at the deep inner workings
of the OpenGL implementation were invaluable
in debugging these issues.

Project source code can be found on the
andarshaders google code page.
http://code.google.com/p/andarshaders

A demo video can be found here.
http://www.youtube.com/watch?v=8cr5SLu0
2U0

References
[1] Ropinski, Timo and Wachenfeld, Steffen and
Hinrichs “Virtual Reflections for Augmented
Reality Environments”, Proceedings of the 14th
International Conference on Artificial Reality
and Telexistence (ICAT04), 318(1),
http://viscg.uni-
muenster.de/publications/2004/RWH04/\
[2] Domhan, Tobias, Android Augmented
Reality (AndAR),
http://code.google.com/p/andar/
[3] Wyman, Chris, “An Approximate Image
Space Approach for Interactive Refraction”,
 ACM Transactions on Graphics 24(3), 10,
http://www.cs.uiowa.edu/~cwyman/pubs.html
[4] Everitt, Cass, “Getting to know the Q texture
coordinate...”,
http://www.xyzw.us/~cass/qcoord/

http://code.google.com/p/andarshaders�
http://www.youtube.com/watch?v=8cr5SLu02U0�
http://www.youtube.com/watch?v=8cr5SLu02U0�
http://viscg.uni-muenster.de/publications/2004/RWH04/�
http://viscg.uni-muenster.de/publications/2004/RWH04/�
http://code.google.com/p/andar/�
http://portal.acm.org/browse_dl.cfm?coll=portal&idx=J778�
http://www.cs.uiowa.edu/~cwyman/pubs.html�
http://www.xyzw.us/~cass/qcoord/�

	Abstract
	Introduction
	Reflection
	Approximate Screen-Space Bounding Box
	Constructing the Cube Map
	Reflecting in the Fragment Shader
	Results

	Refraction
	Approximating the Refracted distance
	Refraction in the shader
	Results

	Conclusion
	References

