
Rigid Body Dynamics Simulator

Sandbox

Patrick Phipps, Sriram Narayanan

Abstract

The goal of this project was to create a physics

simulation environment to impose realistic models of

translations, rotations and collision detection on rigid

bodies. The collision detection includes methods for

edge, vertex and face to face collisions for convex

polygons. Freely moving mesh objects can be given an

initial velocity and initial rotation, and if a collision

occurs it will be resolved based on these implemented

methods. The resolution incorporates both elastic and

inelastic collisions. This simulator can be used to

model the physics of various objects, and scenes can be

created for specific simulation purposes.

Introduction

Modeling physical simulations of rigid bodies has been

an ongoing problem in the graphics community, with

many methods of implementation discussed over the

past few decades. An important aspect of creating

realistic simulations is collision detection, and how

objects interact with each other. Computation of

collision detection algorithms can be expensive if they

are not efficient, as it generally requires checking many

surface points on two or more distinct objects. The

paper “Collision Detection and Response for Computer

Animation,” written by Matthew Moore and Jane

Wilhelms presents algorithms for detecting face to

face, vertex and edge collisions, and responding to

them by predicting behavior according to physics. This

requires giving models specific velocities and rotations

that are updated correctly based on the result of the

collision.

System Overview

For the simulator, a mesh object can be loaded and is

stored within an “actor,” which is used describe an

object. The actor is given a mass, and the center of

mass is calculated by adding all of the vertices in the

mesh and dividing by the total number of vertices. This

yields a fast solution to requiring a center of mass, but

is easily skewed by models created without this in

mind.

The physics class is structured with a specific hierarchy

to facilitate collision detection and resolution. The class

contains the actors that have been created, which in

turn contain the bounding boxes. The order of

operations performed is as follows. First, a rough

bounding box check is performed at each step to gauge

whether two actors are close enough to consider a

collision check. This reduces the computational load

because it is much faster than running collision checks

between meshes first. The bounding box check is

performed by taking a vector from the center of each

box to a corner and getting half the distance. Then the

distance is compared to the distance between the two

actors.

If this distance is less than both of the vectors for each

bounding box, the actors are in close enough proximity

for the next step. This involves the collision detection

algorithm which checks for face, vertex and edge

collisions. If a collision is detected, the collision

resolution algorithm is initiated. The velocity and

angular rotation are integrated to yield the new velocity

and angular rotation for each actor. Each step will now

be covered in more detail.

Algorithm Overview

Bounding box check distance

 if (true):

 Face collision detection

 if (hit):

 collision resolution

 Vertex collision detection

 if (hit):

 collision resolution

 Edge collision detection

 if (hit):

 collision resolution

Collision Detection

The full collision detection algorithm is broken into

three main parts and produces a collision point and

collision plane or Boolean value for false if there is no

collision. The algorithm utilizes these methods in the

following order: Face collisions, vertex collisions and

edge collisions.

The face to face collision works on actors “A” and “B”.

In the implementation the faces of A are looped over

and divided into triangles. The vertices of the triangle

are averaged, which yields a point in the middle of the

face. These generated points are then fed into the point

in mesh function. This function takes a point and a

mesh and checks to see if the point is in the mesh. This

is done by taking the dot product of the point with

every face normal in the mesh. If all dot products

yielded are negative, the point is in the mesh. If any dot

product is not negative the point is not in the mesh. If

any of these generated centroids are found to be in the

mesh then a face to face collision is detected.

The above method yields very geometry dependent

results, such as if a flat face is made up of several

triangles. To mitigate this, all points found to be in the

mesh are averaged together to yield a better collision

point. The collision plane generated by a face to face

collision is the normal of any of the collision triangles

of the face. By convention this is the normal pointing

from B to A. This algorithm is O (number of triangles

of A * number of vertices of B).

Figure 1: Face to face collision

The second collision test is to check if any of the

vertices of A are in B. This is a simple task since the

function point in mesh is required for face to face

collisions. When point in mesh is run on vertex A and

mesh B, the first point to be found in the mesh is

returned as the collision point. The collision plane is

defined by taking the closest face of B to the collision

point and using its normal. This algorithm is O

(number of vertices in A * number of faces in B).

The last collision test is the edge test. This test loops

over every edge in A and every triangle in B. The first

step of this algorithm is to calculate the perpendicular

distance from the ends of the edge from the triangle's

plane.

𝑑𝑖 = (𝑣𝑖 − 𝑢𝑘1) ∙ 𝑛

𝑑𝑗 = (𝑣𝑗 − 𝑢𝑘1) ∙ 𝑛

This test is used to check if there is a chance that this

edge has intersected this face. If the signs of the

distances differ then the test can proceed because the

edge intersects the triangle. This point can be

calculated via the following equation:

𝑡 =
|𝑑𝑖|

|𝑑𝑖| + |𝑑𝑗|

𝑃 = 𝑣𝑖 + 𝑡(𝑣𝑗 − 𝑣𝑖)

After completing this process with every face for the

given edge a collection of points is generated along the

edge. This collection of points, t, is then sorted. Every

pair of these points, including the pair consisting of the

start and end vertex, are averaged to generate a point

on the line. This point is then run through the point in

mesh function, and the first point to be found in the

mesh is returned as the collision point. The collision

plane for this collision is given by the cross product of

the edge with the plane it is intersecting. This algorithm

is O (edges of A * faces of B).

Figure 2: Edge subdivision

Figure 3: Edge collision

Translations

For modeling the movement and rotation of objects a

simple Euler integrator is used. Actors can be given an

initial velocity vector, which will translate the

geometry according to the velocity. The actor can also

be given an initial rotation vector which is given in

degrees. Using the rotation vector, a rotation matrix is

created using the following principles outlined in the

Matrix class:

𝑅𝑥(𝜃) [

1 0 0
0 𝑐𝑜𝑠(𝜃) −𝑠𝑖𝑛(𝜃)

0 𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃)
]

𝑅𝑦(𝜃) [
𝑐𝑜𝑠(𝜃) 0 𝑠𝑖𝑛(𝜃)
0 1 0

−𝑠𝑖𝑛(𝜃) 0 𝑐𝑜𝑠(𝜃)
]

𝑅𝑧(𝜃) [
𝑐𝑜𝑠(𝜃) −𝑠𝑖𝑛(𝜃) 0

𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃) 0
0 0 1

]

The center of mass is rotated on each axis by the

angular velocity which gives the new rotation of the

object. The center of mass is then shifted by adding the

velocity to itself.

Collision Resolution

Collision resolution for velocity and rotation, which is

the primary focus of this simulation since friction is

omitted, is straightforward with the right parameters.

The parameters are as follows:

𝑣𝑎 = velocity of A

𝑣𝑏 = velocity of B

𝑛 = the normal to the plane of collision

𝑟𝑎 = a vector from the center of mass of A to the

collision point

𝑟𝑏 = a vector from the center of mass of B to the

collision point

𝜔𝑎 = angular velocity of A

𝜔𝑏 = angular velocity of B

𝑚𝑎, 𝑚𝑏 = the mass of A and B

𝐼𝑎 , 𝐼𝑏 = inverse inertial tensor of A and B

𝑗 = impulse of the collison

The calculation of the inertial tensor is given by:

𝐼 = [

𝐼11 𝐼12 𝐼13
𝐼21 𝐼22 𝐼23
𝐼31 𝐼32 𝐼33

]

𝐼11 = 𝐼𝑥𝑥 ≝∑𝑚𝑘(𝑦𝑘
2 + 𝑧𝑘

2)

𝑁

𝑘=1

𝐼22 = 𝐼𝑦𝑦 ≝∑𝑚𝑘(𝑥𝑘
2 + 𝑧𝑘

2)

𝑁

𝑘=1

𝐼33 = 𝐼𝑧𝑧 ≝∑𝑚𝑘(𝑥𝑘
2 + 𝑦𝑘

2)

𝑁

𝑘=1

𝐼12 = 𝐼𝑥𝑦 ≝ −∑𝑚𝑘𝑥𝑘𝑦𝑘

𝑁

𝑘=1

𝐼13 = 𝐼𝑥𝑧 ≝ −∑𝑚𝑘𝑥𝑘𝑧𝑘

𝑁

𝑘=1

𝐼23 = 𝐼𝑦𝑧 ≝ −∑𝑚𝑘𝑦𝑘𝑧𝑘

𝑁

𝑘=1

𝐼12 = 𝐼21 𝐼13 = 𝐼31 𝐼23 = 𝐼32

The new velocity of A and B as well as the new angular

velocity of A and B are as follows:

𝑉𝑎𝑓
→ = 𝑉𝑎𝑖 −

𝐽

𝑚𝑎
𝑛

𝑉𝑏𝑓
→ = 𝑉𝑏𝑖 −

𝐽

𝑚𝑏
𝑛

𝜔𝑎𝑓 = 𝜔𝑎𝑖 − [𝐼𝑎]
−1(𝐽 × 𝑟𝑎)

𝜔𝑏𝑓 = 𝜔𝑏𝑖 − [𝐼𝑏]
−1(𝐽 × 𝑟𝑏)

Using these values the impulse j, generated from a

collision, can calculated as follows:

−(1 + 𝑒)(𝑣𝑎 − 𝑣𝑏) ∙ 𝑛 + (𝑟𝑎 × 𝑛) ∙ 𝜔𝑎 − (𝑟𝑏 × 𝑛) ∙ 𝜔𝑏

1
𝑚𝑎

+
1
𝑚𝑏
+ (𝑟𝑎 × 𝑛) ∙ ([𝐼𝑎]

−1(𝑟𝑎 × 𝑛)) + (𝑟𝑏 × 𝑛) ∙ ([𝐼𝑏]
−1(𝑟𝑏 × 𝑛))

Tests Run

Testing the simulations was made easier with the

addition of a scene loader, which reads in text files of

objects with set positions, velocities and rotations. This

expedited running tests for face, edge and vertex

collisions by setting predetermined paths for objects to

collide. It also allows setting up multiple collisions

between several actors quickly.

 For the face to face collision, two boxes were set apart

and given velocities so they would collide directly on

one side. This allowed for the testing of elastic

collisions. For the edge test, a box was rotated and

collided with another box by giving it a velocity down.

This test enabled the correction of an issue where face

to face collisions caused cubes to rotate due to collision

vectors being slightly offset.

The vertex collision involved launching a box corner at

the face of another box and analyzing the resolution.

This allowed testing elastic collisions as well as

rotation during resolution. Tests were modified by

giving actors different weights and sizes to see if the

response was modeled accurately.

Results

Following the description from [3] correct collision

detection between faces, edges and vertices on faces

was able to be implemented. Following the equations

from [2] and [4] the resolutions of these collisions are

modeled with relative accuracy. The bounding box

check lowers the computational cost by only

performing collision detection if two actors are

relatively close together. With these systems in place

multiple actors are able to collide. Collisions between

two objects with high polygon counts cannot be

simulated.

Future Work

While this simulation adds a working collision

detection and resolution system, there are many areas

which can be improved upon. A rudimentary bounding

box check was implemented because the boxes are not

given correctly triangulated geometry. A more robust

check would feature collision detection for properly

computed geometry of the bounding box.

 Another flaw in the system is that it is very obvious

when the bounding box check passes and collision

detection ensues. This effect is even more obvious

when there are many (or about to be many) collisions

happening simultaneously. This hints at an adaptive

time stepper, or a more advanced method of integration

from the simple Euler integration method used. The

center of mass calculation is, as mentioned before, less

than stellar. It does not have proper mass summation

since all of the mass is on the vertexes this causes the

center of mass to be skewed to where the highest

number of vertices is.

The current implementation of collision detection is

very inefficient. While the methods that are described

in this paper suffice the implementation is not true to

the described algorithm. The collision detection

algorithm should furnish a point and a plane upon

collision. The current implementation only produces

the collision point. Instead, another round of processing

must occur to determine the collision plane. The

impulse based collision response is also an area of

improvement. Impulse based response can handle

elastic or perfectly elastic collisions, but once the

objects are moving they will not come to rest.

Another piece that would be required in a feature

complete physics simulator is resting contact between

objects, which would require the implementation of

friction. The addition of constraints would allow an

object to rotate freely while not translating. An

improved simulation interface would allow quick

loading of objects without the use of the command line.

References

[1] H e c k e r , C h r i s . " P h y s i c s P a r t 3 :

C o l l i s i o n R e s p o n s e . " G a m e D e v e l o p m e n t

M a g a z i n e M a r 1 9 9 7 : 11 - 1 8 . We b . 4 M a y

2 0 1 1 .

< http://chrishecker.com/images/e/e7/Gdmphys3.pdf>

[2] H e c k e r , C h r i s . " P h y s i c s P a r t 4 : T h e

T h i r d D i m e n s i o n . " G a m e D e v e l o p m e n t

M a g a z i n e J u n e 1 9 9 7 : 1 5 - 2 6 . We b . 4

M a y 2 0 11 .

< http://chrishecker.com/images/b/bb/Gdmphys4.pdf> .

[3] M o o r e , M a t t h e w, a n d W i l h e l m s J a n e .

" C o l l i s i o n D e t e c t i o n a n d R e s p o n s e f o r

C o m p u t e r A n i m a t i o n . " S I G G R A P H ' 8 8 .

2 2 . 4 (1 9 8 8) : 9 . P r i n t .

< http://graphics.stanford.edu/courses/cs448-01-

spring/papers/moore.pdf>

[4] B a k e r , M a r t i n . " E u c l i d e a n

S p a c e . " E u c l i d e a n S p a c e . N . p . , n . d .

We b . 4 M a y 2 0 1 1 .

< h t t p : / / w w w. e u c l i d e a n s p a c e . c o m / p h y s i c s / > .

