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Abstract 
 
The goal of this project was to create a physics 

simulation environment to impose realistic models of 

translations, rotations and collision detection on rigid 

bodies. The collision detection includes methods for 

edge, vertex and face to face collisions for convex 

polygons. Freely moving mesh objects can be given an 

initial velocity and initial rotation, and if a collision 

occurs it will be resolved based on these implemented 

methods.  The resolution incorporates both elastic and 

inelastic collisions. This simulator can be used to 

model the physics of various objects, and scenes can be 

created for specific simulation purposes. 

 

Introduction 

 
Modeling physical simulations of rigid bodies has been 

an ongoing problem in the graphics community, with 

many methods of implementation discussed over the 

past few decades. An important aspect of creating 

realistic simulations is collision detection, and how 

objects interact with each other. Computation of 

collision detection algorithms can be expensive if they 

are not efficient, as it generally requires checking many 

surface points on two or more distinct objects. The 

paper “Collision Detection and Response for Computer 

Animation,” written by Matthew Moore and Jane 

Wilhelms presents algorithms for detecting face to 

face, vertex and edge collisions, and responding to 

them by predicting behavior according to physics. This 

requires giving models specific velocities and rotations 

that are updated correctly based on the result of the 

collision.  

 

System Overview 
 

For the simulator, a mesh object can be loaded and is 

stored within an “actor,” which is used describe an 

object. The actor is given a mass, and the center of 

mass is calculated by adding all of the vertices in the 

mesh and dividing by the total number of vertices. This 

yields a fast solution to requiring a center of mass, but 

is easily skewed by models created without this in 

mind. 

 

The physics class is structured with a specific hierarchy 

to facilitate collision detection and resolution. The class 

contains the actors that have been created, which in 

turn contain the bounding boxes. The order of 

operations performed is as follows. First, a rough 

bounding box check is performed at each step to gauge 

whether two actors are close enough to consider a 

collision check. This reduces the computational load 

because it is much faster than running collision checks 

between meshes first. The bounding box check is 

performed by taking a vector from the center of each 

box to a corner and getting half the distance. Then the 

distance is compared to the distance between the two 

actors.  

 

If this distance is less than both of the vectors for each 

bounding box, the actors are in close enough proximity 

for the next step. This involves the collision detection 

algorithm which checks for face, vertex and edge 

collisions. If a collision is detected, the collision 

resolution algorithm is initiated. The velocity and 

angular rotation are integrated to yield the new velocity 

and angular rotation for each actor. Each step will now 

be covered in more detail. 

 

Algorithm Overview 

Bounding box check distance 

  if (true): 

    Face collision detection 

      if (hit): 

        collision resolution 

    Vertex collision detection 

      if (hit): 

        collision resolution 

    Edge collision detection 

      if (hit): 

        collision resolution  

 

Collision Detection 

 

The full collision detection algorithm is broken into 

three main parts and produces a collision point and 

collision plane or Boolean value for false if there is no 



collision. The algorithm utilizes these methods in the 

following order: Face collisions, vertex collisions and 

edge collisions.  

 

The face to face collision works on actors “A” and “B”. 

In the implementation the faces of A are looped over 

and divided into triangles. The vertices of the triangle 

are averaged, which yields a point in the middle of the 

face. These generated points are then fed into the point 

in mesh function. This function takes a point and a 

mesh and checks to see if the point is in the mesh. This 

is done by taking the dot product of the point with 

every face normal in the mesh. If all dot products 

yielded are negative, the point is in the mesh. If any dot 

product is not negative the point is not in the mesh. If 

any of these generated centroids are found to be in the 

mesh then a face to face collision is detected.  

 

The above method yields very geometry dependent 

results, such as if a flat face is made up of several 

triangles. To mitigate this, all points found to be in the 

mesh are averaged together to yield a better collision 

point. The collision plane generated by a face to face 

collision is the normal of any of the collision triangles 

of the face. By convention this is the normal pointing 

from B to A. This algorithm is O (number of triangles 

of A * number of vertices of B). 

 

 
Figure 1: Face to face collision 

 

The second collision test is to check if any of the 

vertices of A are in B. This is a simple task since the 

function point in mesh is required for face to face 

collisions. When point in mesh is run on vertex A and 

mesh B, the first point to be found in the mesh is 

returned as the collision point. The collision plane is 

defined by taking the closest face of B to the collision 

point and using its normal. This algorithm is O 

(number of vertices in A * number of faces in B). 

 

The last collision test is the edge test. This test loops 

over every edge in A and every triangle in B. The first 

step of this algorithm is to calculate the perpendicular 

distance from the ends of the edge from the triangle's 

plane. 

𝑑𝑖 = (𝑣𝑖 − 𝑢𝑘1) ∙ 𝑛 

 

𝑑𝑗 = (𝑣𝑗 − 𝑢𝑘1) ∙ 𝑛 

 

This test is used to check if there is a chance that this 

edge has intersected this face. If the signs of the 

distances differ then the test can proceed because the 

edge intersects the triangle. This point can be 

calculated via the following equation:  

 

𝑡 =  
|𝑑𝑖|

|𝑑𝑖| + |𝑑𝑗|
 

 

𝑃 =  𝑣𝑖 + 𝑡(𝑣𝑗 − 𝑣𝑖) 

 

After completing this process with every face for the 

given edge a collection of points is generated along the 

edge. This collection of points, t, is then sorted. Every 

pair of these points, including the pair consisting of the 

start and end vertex, are averaged to generate a point 

on the line. This point is then run through the point in 

mesh function, and the first point to be found in the 

mesh is returned as the collision point. The collision 

plane for this collision is given by the cross product of 

the edge with the plane it is intersecting. This algorithm 

is O (edges of A * faces of B). 

 

 
Figure 2: Edge subdivision 

 

 
Figure 3: Edge collision 

 

 

 



Translations 
 

For modeling the movement and rotation of objects a 

simple Euler integrator is used. Actors can be given an 

initial velocity vector, which will translate the 

geometry according to the velocity. The actor can also 

be given an initial rotation vector which is given in 

degrees. Using the rotation vector, a rotation matrix is 

created using the following principles outlined in the 

Matrix class:  

 

𝑅𝑥(𝜃) [

1 0 0
0 𝑐𝑜𝑠(𝜃) −𝑠𝑖𝑛(𝜃)

0 𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃)
]    

 

𝑅𝑦(𝜃) [
𝑐𝑜𝑠(𝜃) 0 𝑠𝑖𝑛(𝜃)
0 1 0

−𝑠𝑖𝑛(𝜃) 0 𝑐𝑜𝑠(𝜃)
]    

 

𝑅𝑧(𝜃) [
𝑐𝑜𝑠(𝜃) −𝑠𝑖𝑛(𝜃) 0

𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃) 0
0 0 1

] 

 
The center of mass is rotated on each axis by the 

angular velocity which gives the new rotation of the 

object. The center of mass is then shifted by adding the 

velocity to itself. 

      

Collision Resolution 
 

Collision resolution for velocity and rotation, which is 

the primary focus of this simulation since friction is 

omitted, is straightforward with the right parameters. 

The parameters are as follows: 

  

𝑣𝑎 = velocity of A 

𝑣𝑏 = velocity of B 

𝑛 =  the normal to the plane of collision  

𝑟𝑎 = a vector from the center of mass of A to the 

collision point 

𝑟𝑏 = a vector from the center of mass of B to the 

collision point 

𝜔𝑎 = angular velocity of A  

𝜔𝑏 = angular velocity of B  

𝑚𝑎, 𝑚𝑏 = the mass of A and B 

𝐼𝑎 , 𝐼𝑏 = inverse inertial tensor of A and B  

𝑗 = impulse of the collison  

 

The calculation of the inertial tensor is given by: 

 

𝐼 =  [

𝐼11 𝐼12 𝐼13
𝐼21 𝐼22 𝐼23
𝐼31 𝐼32 𝐼33

] 

 

𝐼11 = 𝐼𝑥𝑥 ≝∑𝑚𝑘(𝑦𝑘
2 + 𝑧𝑘

2)

𝑁

𝑘=1

 

𝐼22 = 𝐼𝑦𝑦 ≝∑𝑚𝑘(𝑥𝑘
2 + 𝑧𝑘

2)

𝑁

𝑘=1

 

𝐼33 = 𝐼𝑧𝑧 ≝∑𝑚𝑘(𝑥𝑘
2 + 𝑦𝑘

2)

𝑁

𝑘=1

 

𝐼12 = 𝐼𝑥𝑦 ≝ −∑𝑚𝑘𝑥𝑘𝑦𝑘

𝑁

𝑘=1

 

𝐼13 = 𝐼𝑥𝑧 ≝ −∑𝑚𝑘𝑥𝑘𝑧𝑘

𝑁

𝑘=1

 

𝐼23 = 𝐼𝑦𝑧 ≝ −∑𝑚𝑘𝑦𝑘𝑧𝑘

𝑁

𝑘=1

 

𝐼12 = 𝐼21    𝐼13 = 𝐼31   𝐼23 = 𝐼32 

 

The new velocity of A and B as well as the new angular 

velocity of A and B are as follows: 

𝑉𝑎𝑓
→  = 𝑉𝑎𝑖 −

𝐽

𝑚𝑎
𝑛 

 

𝑉𝑏𝑓
→ = 𝑉𝑏𝑖 −

𝐽

𝑚𝑏
𝑛 

 

𝜔𝑎𝑓 = 𝜔𝑎𝑖 − [𝐼𝑎]
−1(𝐽 × 𝑟𝑎) 

 

𝜔𝑏𝑓 = 𝜔𝑏𝑖 − [𝐼𝑏]
−1(𝐽 × 𝑟𝑏) 

 

Using these values the impulse j, generated from a 

collision, can calculated as follows: 

 

 
−(1 + 𝑒)(𝑣𝑎 − 𝑣𝑏) ∙ 𝑛 + (𝑟𝑎 × 𝑛) ∙ 𝜔𝑎 − (𝑟𝑏 × 𝑛) ∙ 𝜔𝑏

1
𝑚𝑎

+
1
𝑚𝑏
+ (𝑟𝑎 × 𝑛) ∙ ([𝐼𝑎]

−1(𝑟𝑎 × 𝑛)) + (𝑟𝑏 × 𝑛) ∙ ([𝐼𝑏]
−1(𝑟𝑏 × 𝑛))

 

 

Tests Run 
 

Testing the simulations was made easier with the 

addition of a scene loader, which reads in text files of 

objects with set positions, velocities and rotations. This 

expedited running tests for face, edge and vertex 

collisions by setting predetermined paths for objects to 

collide. It also allows setting up multiple collisions 

between several actors quickly. 

 

 For the face to face collision, two boxes were set apart 

and given velocities so they would collide directly on 

one side. This allowed for the testing of elastic 

collisions. For the edge test, a box was rotated and 

collided with another box by giving it a velocity down. 

This test enabled the correction of an issue where face 



to face collisions caused cubes to rotate due to collision 

vectors being slightly offset.  

 

The vertex collision involved launching a box corner at 

the face of another box and analyzing the resolution. 

This allowed testing elastic collisions as well as 

rotation during resolution. Tests were modified by 

giving actors different weights and sizes to see if the 

response was modeled accurately.  

 

Results 
 

Following the description from [3] correct collision 

detection between faces, edges and vertices on faces 

was able to be implemented. Following the equations 

from [2] and [4] the resolutions of these collisions are 

modeled with relative accuracy.  The bounding box 

check lowers the computational cost by only 

performing collision detection if two actors are 

relatively close together. With these systems in place 

multiple actors are able to collide. Collisions between 

two objects with high polygon counts cannot be 

simulated. 

 

Future Work 
 

While this simulation adds a working collision 

detection and resolution system, there are many areas 

which can be improved upon. A rudimentary bounding 

box check was implemented because the boxes are not 

given correctly triangulated geometry. A more robust 

check would feature collision detection for properly 

computed geometry of the bounding box. 

 

 Another flaw in the system is that it is very obvious 

when the bounding box check passes and collision 

detection ensues. This effect is even more obvious 

when there are many (or about to be many) collisions 

happening simultaneously. This hints at an adaptive 

time stepper, or a more advanced method of integration 

from the simple Euler integration method used. The 

center of mass calculation is, as mentioned before, less 

than stellar. It does not have proper mass summation 

since all of the mass is on the vertexes this causes the 

center of mass to be skewed to where the highest 

number of vertices is.  

 

The current implementation of collision detection is 

very inefficient. While the methods that are described 

in this paper suffice the implementation is not true to 

the described algorithm. The collision detection 

algorithm should furnish a point and a plane upon 

collision. The current implementation only produces 

the collision point. Instead, another round of processing 

must occur to determine the collision plane. The 

impulse based collision response is also an area of 

improvement. Impulse based response can handle 

elastic or perfectly elastic collisions, but once the 

objects are moving they will not come to rest. 

 

Another piece that would be required in a feature 

complete physics simulator is resting contact between 

objects, which would require the implementation of 

friction. The addition of constraints would allow an 

object to rotate freely while not translating. An 

improved simulation interface would allow quick 

loading of objects without the use of the command line.  
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