
WebGL Whiteboard Eraser
MICHAEL J. SNYDER

ADVANCED COMPUTER GRAPHICS WITH PROFESSOR BARB CUTLER

RENSSELAER POLYTECHNIC INSTITUTE

MAY 5, 2011

1 Introduction

Throughout the past decade, both computers and

technology in general have advanced significantly. With

today’s mainstream desktops, laptops, smartphones,

gaming platforms, and other internet-enabled devices,

it is easier than ever before for individuals to connect

and stay connected with one another. In order for

these individuals to stay connected such devices typically

possess some sort of web browser. Technology-centric

companies have realized this and have recently begun

focusing their efforts on capitalizing on their virtual

customers’ desires.

In recent years, companies like Google and Facebook

have released browser-based versions of software that

traditionally could only be run from a user’s desktop.

Google Documents and Facebook Chat, word processing

and instant messaging programs, respectively, are just two

examples of this. Increasingly, internet users are living

inside their browsers instead of running a multitude of

software applications separately on their desktop. This,

consequently, highlights two key offerings of the internet:

1. Location-independent accessibility

2. Interaction and collaboration

First, because the internet is a global network,

information can be stored and retrieved regardless

of the connection point. In turn, this means that

both strangers and well-acquainted individuals can

potentially communicate with each other no matter

where they are. This ability to quickly and easily send

information back and forth fosters a second offering of

the internet—interaction and collaboration. Being that

individuals across the world are essentially connected

with one another at all hours of the day, it is logical to use

the global network to work together. Using the internet,

individuals today can collaboratively engage in activities

ranging in nature from academic to pure entertainment,

all without leaving their homes.

It makes sense, then, why software companies are

increasingly favoring the browser as their platform of

choice. By offering an application that runs inside a web

browser, a company is effectively distributing its work

to everyone using the internet. Today’s browsers are

relatively well-standardized, so compatibility is typically

not an issue. Finally, browsers are free, so there is no

notion of a platform entrance fee that must be paid for

a mainstream consumer operating system. All things

considered, marketing browser-based software is rather

low-risk. However, this software category is not mature

and many classes of applications have not yet made the

transition—one of the largest such classes being that of

artistic programs.

Multimedia companies Adobe and Autodesk, for

example, obtain their revenue primarily by selling

software tools to digital artists. Their software

applications have elegant user interfaces, perform

very well, and are used throughout the professional

community. What the software doesn’t have, though, is

portability. If an artist has licensed access to a multimedia

application from either company, they must use it at the

location where it was installed. Furthermore, despite

the multimedia industry having a very collaborative

environment, it is not possible for two artists to work on

the same digital piece using typical commercial software.

Thankfully, these two glaring issues disappear completely

when working with browser-based software.

With the recent promotion of HTML5 and WebGL,

what can be done in a browser has now become

virtually limitless. All of the things that users enjoy

about traditional desktop multimedia software but were

previously not possible within a browser, such as fully

fleshed-out interfaces and speed, are perfectly attainable

on the web today. Consequently, it is the perfect time to

take a look at multimedia software and how it could be

implemented and used in a browser.

This project aims to build upon a previously-developed

real-time, multi-user WebGL painting application by



MICHAEL J. SNYDER — WEBGL WHITEBOARD ERASER 2

offering a fully-functioning eraser tool. Being that the

original version of the application presented a robust

painting interface, much of the functionality offered

by the brush tool is mimicked by the eraser. Tip

customization such as shape, rotation, roundness, and

size is possible as well as the management of opacity,

flow, and spacing parameters. In combination with the

brush tool, the eraser developed here provides users with

complete control over the information stored on their

canvas.

2 Related Work

Despite the fact that browser-based software has not

yet matured, there has been a great deal of work,

typically hobbyists’ experiments, in the area. Many of

these works are of high quality but lack certain features

that would be necessary to emulate a painting program

like Adobe Photoshop in a browser. Specifically, most

current browser-based painting applications do not offer

layer support and consequently do not provide a true

eraser tool. This lack of an eraser is justifiable in

such situations because information can be removed

from a single-layer canvas by simply painting with the

designated background color. Applications such as

Sketchpad [2] and CanvasPaint [1] are two examples

of painting programs that take this approach to eraser

functionality. Very recently, however, art community

site deviantART released an HTML5 canvas painting

application called muro [3] that supports both layers and

an eraser tool.

The deviantART muro application is a notable

exception to other current browser painting programs

as it allows users to utilize layers and a true eraser. The

layering functionality in muro behaves as would be

expected, with layers higher in the stack taking display

precedence over layers lower in the stack. Furthermore,

blending is performed based on the alpha component of

each pixel in each visible layer. The erasing functionality

is somewhat limited and only allows the user to specify

brush opacity, size, and softness. Important settings

such as brush shape, rotation, and roundness as well as

more complicated parameters such as flow are omitted.

As a result, the user does not have the same flexibility

offered when adding data to the canvas as they do when

removing it—which is a significant oversight.

Similarly, various open source desktop painting

applications have been developed with eraser

functionality. In general, these applications, such as

GIMP [4] and MyPaint [5], offer relatively robust feature

sets and eraser parameters but have the luxury of running

outside a web browser. This ability to run natively at

the user’s desktop drastically improves performance and

allows per-pixel computations to be performed on the

CPU. Given that the application being extended here

necessarily runs in a WebGL environment, per-pixel

operations are not possible on the CPU for performance

reasons and an alternative approach must be used.

In reviewing currently-available browser painting

applications, it can be seen that a fully robust eraser tool

does not yet exist. Although various procedures have been

implemented to provide basic eraser functionality, these

implementations either do not fully utilize WebGL or are

based on per-pixel operations on the CPU. Consequently,

the eraser tool for this application must approach the

issue in a new and performance-friendly manner.

3 Methodology

In order to provide a fully-functional eraser tool, all of

the options available when painting must be offered to

the user when removing information from the canvas.

Specifically, brush size, shape, and orientation as well

as the dynamic between flow and opacity had to be

implemented and respected. With regard to erasing,

these parameters behave identically to their painting

counterparts but deal with removing, instead of adding,

information from the canvas.

3.1 Eraser Shape

Unlike most other browser-based painting applications,

the shape of the tip used for erasing is not limited in any

way. By default, the application references pre-loaded

brushes stored in a specified directory. If the user has

access to the web server where the application is being

hosted, they can simply upload an image file to the brush

directory and the application will automatically offer it as

a tip the next time it is loaded. Since the brushes are based

on sampled images, there is no restriction on what can or

cannot be a tip shape.



MICHAEL J. SNYDER — WEBGL WHITEBOARD ERASER 3

3.2 Eraser Size

The size of the brush tip is equal to the maximum

dimension, whether it be width or height. This

definition helps to maintain consistency between brushes

of different aspect ratios.

When the eraser is resized, the scale factor to transform

the maximum dimension to the desired size is calculated.

Both the width and height are then multiplied by this

factor to produce an isotropically-scaled image. Note that

the brush is not permitted to resize itself to the point

where one or both dimensions are zero. This ensures that

the user’s tip will always be capable of removing some

amount of information from the canvas.

3.3 Eraser Rotation

In order to rotate the selected tip by an arbitrary amount,

a temporary 2D canvas must be used. The dimensions

of the temporary canvas use the length of the diagonal of

the source tip as the width and height. This ensures that

the rotated brush tip will not be clipped by the bounding

region of the canvas.

After rotating the eraser about its center, there is

typically a massive amount of excess padding that

remains. Although this excess padding is all transparent

and would not affect the removal of color from the canvas

when used as a mask, its size contribution can degrade

the performance of other steps in the brush generation

process. Consequently, the minimum bounding box for

the rotated tip is determined and the brush is cropped to

that region.

3.4 Axis-Aligned Eraser Flipping

The flipping process is very straight-forward. If the user

requests an axis flip, the brush pixels are traversed along

the desired dimension until the halfway point is reached.

At each pixel, the alpha value is swapped with the pixel

that is at the same location but mirrored over the desired

axis. The process for X and Y flipping is nearly identical

with the difference being the traversal pattern.

Note that the flipping of the brush takes place prior to

rotation. This sequence ensures that a flipped brush does

not produce unexpected results as the user rotates it.

3.5 Eraser Roundness

The roundness of the eraser is simply a measure of its

height. At 100% roundness, the brush exhibits its original

aspect ratio. Any value lower than 100% results in a scaling

of the height by that value.

Note that the roundness of the brush is set prior to

rotation. If this sequence was not enforced, the brush

would change its shape as it was rotated.

3.6 Eraser Flow

The flow of the eraser is very similar to the opacity

parameter. When set to a value less than 100%, it scales

the alpha component of each pixel in the brush tip the

same way the opacity value does. However, the flow

parameter does not restrict the amount of color that can

be removed from the canvas in a single stroke. This

means that if the user repeatedly passes over the same

location, additional color will be eliminated. In contrast,

the opacity parameter would not allow additional color

to be removed from the canvas. Interestingly, the flow

parameter respects the opacity value. Thus, if, for

example, a user set the eraser to 80% opacity and 30%

flow, color would be removed until it reached 80% of the

source tip alpha value. Figure 1 shows an example of the

eraser flow setting.

Figure 1: The eraser being applied to the canvas with a
20% flow setting. Note how color is continuously removed
from the canvas as the stroke passes over the same pixels
multiple times.

In the WebGL mode of the application, the flow

parameter for the eraser tool is referenced in a GLSL

shader for alpha-scaling purposes. The 2D context mode

of the application scales the transformed source tip’s

alpha values by the selected flow parameter. These



MICHAEL J. SNYDER — WEBGL WHITEBOARD ERASER 4

procedures allow for the gradual removal of color from the

canvas.

3.7 Eraser Opacity

The opacity of the eraser is a somewhat complicated and

convenient parameter. When set to a value less than

100%, it will scale the alpha component of each pixel in

the tip by the denoted parameter. In addition, when the

user erases from the canvas, the amount of color that can

be removed will not exceed the specified opacity value for

the duration of one stroke. When the user releases the

mouse button to finish a stroke, the opacity limit is lifted

and the next stroke may eliminate color up to the limit

once again. Figure 2 shows an example of this parameter.

The opacity limit for color removal is enforced similarly

in both the WebGL and 2D context modes. For the WebGL

mode, the application utilizes a temporary framebuffer

that is scaled to the specified opacity limit as the user

paints into it. After each application of the tip to

the canvas, the framebuffer is subtracted from the base

canvas to provide real-time feedback.

Figure 2: The eraser being applied to the canvas with
a 20% opacity setting. Note how the amount of color
removed from the canvas never exceeds the limit set by
the user.

The 2D context mode is less robust for performance

reasons. In the 2D mode, the application treats the eraser

as a paintbrush and essentially allows the user to draw

over information on the canvas using the background

color.

3.8 Process Overview

Unfortunately, the goal of offering a true eraser tool

within the 2D context mode of the application was not

realistically attainable for performance reasons. When

erasing, especially with opacity and flow parameters, the

alpha values of the source tip and the base canvas must

be observed in order to determine how to modify the base

canvas. This process is rather expensive computationally

when working at the low level of the 2D context. As a

result, the application’s 2D mode only offers an eraser that

behaves as a background-painting brush.

In contrast, the application’s WebGL mode provides

access to framebuffers and highly-efficient GLSL

shaders. These features make it possible to provide

a fully-functioning eraser tool that performs in real-time.

The process implemented for the WebGL eraser tool is

shown in Figure 3.

The erasing process begins by allowing the user

to select and configure their source tip. Using the

procedures outlined in the previous sections, the user is

able to customize their tip rather extensively. After these

settings are applied, the application references the flow

parameter when the user begins erasing.

When the user clicks in the application window,

the initial state of the base canvas is remembered in

an off-screen framebuffer. As the user performs a

brush stroke with the eraser across the canvas, the

selected brush tip is stamped into a separate off-screen

framebuffer where every application is scaled by the

flow parameter. Then, for each application of the

tip to the off-screen framebuffer, the opacity is scaled

to adhere to the user-defined limit and the entire

stroke is subtracted from the previously-remembered

base canvas. This subtraction process is performed

by a custom glBlendFunc() where the source value is

scaled by GL_ZERO and the destination is scaled by

GL_ONE_MINUS_SRC_ALPHA.

Over the course of a single brush stroke, the user

eventually builds up information in the off-screen opacity

framebuffer as in the example shown in the last row

of the diagram. As with each intermediate step, the

opacity of the framebuffer is scaled and then the set

of pixels is subtracted from the base canvas. When

the user arbitrarily releases the mouse button, the erase

stroke is committed to the base canvas and the opacity

framebuffer is cleared. This allows for a cyclical cycle

whereby the user can remove information from the canvas

gradually due to the flow parameter and in a limited

fashion due to the opacity value.



MICHAEL J. SNYDER — WEBGL WHITEBOARD ERASER 5

Figure 3: The eraser process implemented for the application’s WebGL mode. After the brush has been configured and its
alpha levels have been scaled by the flow value, the user’s brush stroke is painted into an off-screen opacity buffer. This
buffer is then subtracted from the state of the canvas prior to the brush stroke beginning. When the user completes their
brush stroke, the base canvas is permanently updated.

4 Results

Over the course of four weeks and roughly 30-40

hours, the eraser tool described here was implemented.

Included in that time was a significant effort to provide

an eraser that relied solely on GLSL shaders and did

not require multiple framebuffers to be maintained.

This approach depended upon a single framebuffer that

was sampled as the user erased to determine how

much additional information, if any, could be removed

from the base canvas. Unfortunately, this approach

proved unsuccessful due to the inability to extrapolate

the amount of information to remove in a given tip

application from the amount of information previously

removed. It was trivial to determine the total amount

of information that could be removed as the value was

equal to the difference between the sampled value in the

off-screen framebuffer and total coverage of 1.0. The

fact that the base canvas was not remembered, however,

produced a blending equation that had to be solved for

an unknown amount. As a result, the approach discussed

here was developed with little to no extra performance

penalty.

Similarly, an issue was encountered with the tool during

development whereby only the first application of the

tip to the canvas would remove any information. All

subsequent applications for both the given and future

strokes would either not remove information or would



MICHAEL J. SNYDER — WEBGL WHITEBOARD ERASER 6

Figure 4: Various eraser settings being used to remove color from the canvas. The shape of the brush is customized and
both the opacity and flow parameters are adjusted.

actually paint into the canvas. After careful analysis, it was

determined that the blend mode applied to the process

was reset to the typical alpha-blending equation when the

real-time feedback was provided to the user. By enforcing

the custom eraser blend mode when subtracting the

off-screen framebuffer from the base canvas, this issue

was fixed and the eraser began functioning properly.

As seen in Figure 4, the final eraser tool developed

for this application fully performs a wide variety of

features. Not only are traditional features such as

hard- and soft-tip erasing supported, but more advanced

options such as brush rotation and roundness are also

available. Furthermore, and most importantly, the

advanced customization offered by flow and opacity

values is fully-functional.

Of course, these successes only pertain to the

application’s WebGL mode. As mentioned earlier, the 2D

mode is restricted, for performance reasons, to a lesser

eraser tool that does not actually remove information

from the base canvas. Although this is acceptable for the

current state of the application, moving forward it would

pose an issue with the implementation of features such

as layers and selection tools.

5 Conclusions

In reviewing the extended version of the painting

application, it is clear that a successful eraser tool

was implemented. Specifically, many features such as

eraser shape and roundness as well as respect for the

complex parameters of opacity and flow were developed.

It is important to take note of these features being

that no other currently-available HTML5 canvas painting

application offers such robustness.

In looking ahead to future possibilities within the



MICHAEL J. SNYDER — WEBGL WHITEBOARD ERASER 7

application, the eraser opens the door to many additional

features. Most importantly, with a true eraser the

application can be designed to offer layer support.

Furthermore, rich selection tools can be implemented

given that the eraser tool allows for clear definitions

between what data is and is not present on the canvas.

In summary, it can be seen that the HTML5 canvas

element is an excellent candidate for a multi-user,

browser-based painting application. Through the

addition of the eraser tool, the base application was

enhanced to the point where many core, critical features

to a program of this type can now be implemented.

This is a significant step forward, as it reinforces the

strength of the HTML5 technology and lessens the

gap between browser-based software and traditional

desktop applications. Hopefully as the web evolves,

advancements like this will help the somewhat niche

area of collaboration tools to expand to the point where

users can seamlessly work in tandem with one another to

accomplish their common goals.



MICHAEL J. SNYDER — WEBGL WHITEBOARD ERASER 8

References

[1] CLAY, C. CanvasPaint. http://canvaspaint.org/, 2006.

[2] DEAL, M., AND PRITCHARD, C. Sketchpad. http://www.orangehoney.com/studio.html, 2010.

[3] DEVIANTART. Muro - dive in, leave your mark. http://news.deviantart.com/article/125373, August 2010.

[4] GIMP. The GNU Image Manipulation Program. http://www.gimp.org/, 2011.

[5] MYPAINT. Open Source Painting. http://mypaint.intilinux.com/, 2011.


	acg_final.pdf

