
Feature Complete Ray Tracer

Geoffrey Wright
Zachary Lynn

Rensselaer Polytechnic Institute

Abstract

In homework assignment 3, the class was tasked with
implementing a simple ray tracer with features such
as sphere intersection, reflection, soft shadows, and
anti-aliasing. After researching more distributed ray
tracing effects, we decided to implement a range of
new features on top of the existing homework 3
infrastructure in order to produce more realistic
renderings.

CR Categories: 1.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism

Keywords: distributed ray tracing

1 Introduction

Distributed ray tracing is an improvement upon ray
tracing which allows for other, soft effects through the
averaging of multiple rays per sample. This paper
demonstrates the implementation of several
distributed ray tracing effects, such as glossy
reflections, motion blur, depth of field, and adaptive
antialiasing. Additionally, we implemented other
utility features which improved the quality of the
images, such as refraction, or enhanced the usability
of our ray tracing test bed, such as in-window
parameter controls and various rendering modes.

2 In-Window Parameter Controls

In-window parameter controls allow the user to
change parameters of the scene, such as bounce
count, shadow samples, use of adaptive antialiasing,
and depth of field, in order test multiple setups
without restarting the application. Figure 1 shows the
list of in-window parameters used in our testbed. This
new feature is incredibly useful for determining
proper parameters for good renderings when setting
up test scenes.

In the original testbed for homework assignment 3,
students were required to close the application and
enter new parameters in the command line arguments
in order to test new parameters. This can be very time
consuming, especially in development applications

like Microsoft Visual Studio, which do not use a
command line interface and require users to traverse
the menu system in order to enter these arguments.
For example, in setting up our test scene for depth of
field, we necessarily had to test several focal lengths in
order to find a good depth to place the sharp plane. It
became rather simple for us to test this and compile
good test scenes, as we were able to simply vary the
parameters quickly within the application instead of
closing the application each time to change
parameters.

Figure 1: In-window parameter controls used in our ray
tracing testbed. The user can edit these parameters without
exiting the application, making testing much quicker.

3 Render Modes

Ray tracing is an expensive process that can take a
significant amount of time, depending upon the
complexity of the scenes and the resolution of the
image to be produced. Rendering every pixel for
testing would be inefficient and wasteful. The user
needs the capability to quickly render an image to
determine if the parameters they have specified will
yield desirable results. However, the user also needs
the capability to render an image without the iterative
refinement of our quick render method. Also, the user
needs the ability to save their images quickly and
efficiently without interruptions in the ray tracing
process. As a result, we have implemented three
unique rendering modes to satisfy the demands of the
user.

3.1 Quick Render

The quick render mode iteratively refines the image
by sampling finer regions from the entire image to the
size of a single pixel. This allows the user to quickly
identify if their specified parameters produce the
intended image. Additionally, quick render allows the
user to see artifacts in the rendered image caused by
input parameters. Figure 2 shows an image during the
quick render process.

Figure 2: Image during the quick render process.

3.2 Full Render

Once the user is satisfied with the parameters of the
test scene, the full render mode renders the scene
pixel by pixel, forgoing the iterative process used by
quick render in order to speed up the rendering time
considerably.

Figure 3: Image during the full render process.

3.3 Render to File

The render to file feature allows users to render the
scene directly to an image file. This offers several
advantages to the user. Render to file does not render
anything to the screen and saves time on OpenGL
calls. Also, this process cannot be interrupted and
doesn’t allow OpenGL to redraw the mesh if the
render window goes in and out of focus. Additionally,
this allows the user to save the image to a file without
having to take a screenshot of the render window.

Figure 4: The render to file feature shows the progress of
writing the image to a file in the console window

4 Adaptive Antialiasing

The implementation of antialiasing in homework
assignment 3 has two main drawbacks. First, it casts
random samples through each pixel, which can create
artifacts if the random samples are all cast in the same
general region of the pixel. Also, since the algorithm
casts samples through every pixel, many areas are
unnecessarily sampled. Second, the algorithm does
not allow for further refinement in areas of the image
which require it.

The algorithm we implemented breaks each pixel into
four subpixels, casting a ray through each subpixel.
These four samples are averaged to determine the
color of the pixel. If the color of any sample is
sufficiently different from the average, the algorithm
is recursively called on the corresponding subpixel.
We allow for up to three recursive calls within any one
pixel in order to avoid unnecessary computation for
marginal improvements.

Figure 5: Image using adaptive antialiasing. The red pixels
indicate areas targeted by the algorithm.

5 Refraction

Refraction is the bending of light as it passes between
two different mediums. In order to implement
refraction, we added an additional parameter to each
material in the scene obj file called IOR (index of
refraction). We used the IOR to determine the
direction a ray (D) gets refracted (R) at a surface
normal (S) according to the following formulas.

 N1 = IOR of the original medium
 N2 = IOR of the new medium
 N = N1 / N2

 C1 = ‐dot(S, D)
 C2 = sqrt(1 – N

2 * (1 – C1
2))

 R = (N * D) + (N * C1 – C2) * S

Figure 6: Refraction of light through a glass sphere with
index of refraction 1.3

6 Motion Blur

Motion blur is the apparent blurring of objects that
move in a still image. In order to implement motion
blur we needed to add a velocity component to each
object, and a time component to each ray. Using these
additionally fields, we could sample an image over
time. To control the quality of the motion blur we
added a parameter specifying the number of temporal
samples to use per pixel. Figure 7 shows the motion
blur algorithm using only 5 samples. With such a low
sample count, the various time samples can be easily
distinguished. Figure 8 shows the same render using
50 samples, which exhibits the blurring effect in
higher detail. Using more samples is unnecessary;
little more detail is shown.

Figure 7: Render showing motion blur using 5 temporal
samples.

Figure 8: Render showing motion blur using 50 temporal
samples.

7 Glossy Reflections

Glossiness is an optical property of a material’s
surface which measures the roughness of the object’s
surface. When rays reflect off the surface, the mirror
angles are perturbed by the roughness, causing a blur
in the reflection. To simulate this effect, we averaged
the color of multiple reflection ray coming off the
surface at relatively random angles. In order to
determine the range of these angles, we first followed
a ray in the perfect mirror direction from the glossy
sphere. After following the ray one unit from the
sphere’s surface, we create a new sphere. We then cast
rays from the glossy sphere to randomly chosen points
on this new sphere. The radius of this sphere will
determine how glossy the reflection looks because as
the sphere’s radius increases, the range of angles
increases. Additionally, more samples should be used
as the radius increases to improve the blur quality.

See figure 9 for an image representation of this
algorithm.

Figure 9: Illustration of the glossy reflection algorithm.

Figure 10: Render of a sphere with a 50% glossy surface.

8 Depth of Field

Depth of field is distinction in sharpness of objects
which are at different distances from the camera. The
camera uses a near and far plane in order to create the
depth of field effect. All of the rays shot out from the
camera intersect the near plane, where the severity of
the effect is determined. We modeled the near plane
using a similar technique as the glossy reflection
algorithm. By placing an imaginary sphere centered at
the intersection of the ray and the near plane, we can
vary the amount of blur by casting new rays from
random points on this sphere. We cast rays from these
new points on the sphere in the direction of the
intersection between the original ray and the sharp
plane. The distance to the sharp plane (focal length)
determines which portion of the scene is in focus.
Figure 11 demonstrates this algorithm visually.

Figure 11: Visual representation of the depth of field
algorithm.

In our implementation, we allow the user to vary the
focal length (distance to the sharp plane) and the blur
radius, which determines the severity of the blur for
objects out of focus. Additionally, the user can specify
the number of rays per sample for the depth of field
effect. Figure 12 shows an example of depth of field in
which the sphere is the focal point of the image.

Figure 12: Example rendering of the depth of field effect
using 100 samples per pixel.

8 Results

Figure 13: Adaptive antialiasing algorithm. Comparison of
off (a) and on (b).

Figure 14: Refraction algorithm. Comparison of index of
refraction: 1.01 (a), 1.1 (b), 1.2 (c), 1.3 (d), 1.4 (e), and 1.5 (f).

Figure 15: Glossy reflection algorithm. Comparison of glossy
values: 0.1 (a), 0.25 (b), 0.5 (c), and 1.0 (d).

Figure 16: Depth of field algorithm. Comparison of focal
lengths: 15.0 (a), 20.0 (b), 25.0 (c), 30.0 (d), 35.0 (e), 40.0
(f), 45.0 (g), and 50.0(h).

9 Conclusion

We successfully implemented all of our planned
features. Some of the features, primarily depth of field
and motion blur, were quite computationally
expensive, but our goal was not to make these
algorithms as efficient as possible; our goal was
simply to make them work and render some good
looking images.

10 Sources

"A Raytracer in C++ - Part IV - Depth of Field, Fresnel
and Blobs." CodermindIn a Coder's Mind, 2008. Web.
5 May 2011.
<http://www.codermind.com/articles/Raytracer-in-
C++-Depth-of-field-Fresnel-blobs.html>.

Cook, Robert L., and Porter, Thomas, and Loren
Carpenter, 1984. Modeling the interaction of light
between diffuse surfaces. Proceedings of SIGGRAPH
1984.

Genetti, Jon, and Dan Gordon. "Ray Tracing With
Adaptive Supersampling in Object Space." UAF
Department of Computer Science. Web. 05 May 2011.
<http://www.cs.uaf.edu/~genetti/Research/Papers/
GI93/GI.html>

Mitchell, Don, 1990. The Antialiasing Problem in Ray
Tracing.

Rademacher, Paul. "Ray Tracing: Graphics for the
Masses." Department of Computer Science, UNC-
Chapel Hill. Web. 05 May 2011.
<http://www.cs.unc.edu/~rademach/xroads-
RT/RTarticle.html>.

Whited, Turner, 1980. An Improved Illumination
Model for Shaded Display. Communications of the
ACM, 23, 6.

