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Abstract 

In homework assignment 3, the class was tasked with 
implementing a simple ray tracer with features such 
as sphere intersection, reflection, soft shadows, and 
anti-aliasing. After researching more distributed ray 
tracing effects, we decided to implement a range of 
new features on top of the existing homework 3 
infrastructure in order to produce more realistic 
renderings.  

CR Categories: 1.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism 
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1 Introduction 

Distributed ray tracing is an improvement upon ray 
tracing which allows for other, soft effects through the 
averaging of multiple rays per sample. This paper 
demonstrates the implementation of several 
distributed ray tracing effects, such as glossy 
reflections, motion blur, depth of field, and adaptive 
antialiasing. Additionally, we implemented other 
utility features which improved the quality of the 
images, such as refraction, or enhanced the usability 
of our ray tracing test bed, such as in-window 
parameter controls and various rendering modes. 

 

2 In-Window Parameter Controls 

In-window parameter controls allow the user to 
change parameters of the scene, such as bounce 
count, shadow samples, use of adaptive antialiasing, 
and depth of field, in order test multiple setups 
without restarting the application. Figure 1 shows the 
list of in-window parameters used in our testbed. This 
new feature is incredibly useful for determining 
proper parameters for good renderings when setting 
up test scenes.  

In the original testbed for homework assignment 3, 
students were required to close the application and 
enter new parameters in the command line arguments 
in order to test new parameters. This can be very time 
consuming, especially in development applications 

like Microsoft Visual Studio, which do not use a 
command line interface and require users to traverse 
the menu system in order to enter these arguments. 
For example, in setting up our test scene for depth of 
field, we necessarily had to test several focal lengths in 
order to find a good depth to place the sharp plane. It 
became rather simple for us to test this and compile 
good test scenes, as we were able to simply vary the 
parameters quickly within the application instead of 
closing the application each time to change 
parameters.  

 

Figure 1: In-window parameter controls used in our ray 
tracing testbed. The user can edit these parameters without 
exiting the application, making testing much quicker. 

3 Render Modes 

Ray tracing is an expensive process that can take a 
significant amount of time, depending upon the 
complexity of the scenes and the resolution of the 
image to be produced. Rendering every pixel for 
testing would be inefficient and wasteful. The user 
needs the capability to quickly render an image to 
determine if the parameters they have specified will 
yield desirable results. However, the user also needs 
the capability to render an image without the iterative 
refinement of our quick render method. Also, the user 
needs the ability to save their images quickly and 
efficiently without interruptions in the ray tracing 
process. As a result, we have implemented three 
unique rendering modes to satisfy the demands of the 
user.  

3.1 Quick Render 



The quick render mode iteratively refines the image 
by sampling finer regions from the entire image to the 
size of a single pixel. This allows the user to quickly 
identify if their specified parameters produce the 
intended image. Additionally, quick render allows the 
user to see artifacts in the rendered image caused by 
input parameters. Figure 2 shows an image during the 
quick render process. 

 

Figure 2: Image during the quick render process. 

3.2  Full Render 

Once the user is satisfied with the parameters of the 
test scene, the full render mode renders the scene 
pixel by pixel, forgoing the iterative process used by 
quick render in order to speed up the rendering time 
considerably. 

 

Figure 3: Image during the full render process. 

3.3 Render to File 

The render to file feature allows users to render the 
scene directly to an image file. This offers several 
advantages to the user. Render to file does not render 
anything to the screen and saves time on OpenGL 
calls. Also, this process cannot be interrupted and 
doesn’t allow OpenGL to redraw the mesh if the 
render window goes in and out of focus. Additionally, 
this allows the user to save the image to a file without 
having to take a screenshot of the render window. 

 

Figure 4: The render to file feature shows the progress of 
writing the image to a file in the console window 

4 Adaptive Antialiasing 

The implementation of antialiasing in homework 
assignment 3 has two main drawbacks. First, it casts 
random samples through each pixel, which can create 
artifacts if the random samples are all cast in the same 
general region of the pixel. Also, since the algorithm 
casts samples through every pixel, many areas are 
unnecessarily sampled. Second, the algorithm does 
not allow for further refinement in areas of the image 
which require it. 

The algorithm we implemented breaks each pixel into 
four subpixels, casting a ray through each subpixel. 
These four samples are averaged to determine the 
color of the pixel. If the color of any sample is 
sufficiently different from the average, the algorithm 
is recursively called on the corresponding subpixel. 
We allow for up to three recursive calls within any one 
pixel in order to avoid unnecessary computation for 
marginal improvements. 



 

Figure 5: Image using adaptive antialiasing. The red pixels 
indicate areas targeted by the algorithm. 

5 Refraction 

Refraction is the bending of light as it passes between 
two different mediums. In order to implement 
refraction, we added an additional parameter to each 
material in the scene obj file called IOR (index of 
refraction). We used the IOR to determine the 
direction a ray (D) gets refracted (R) at a surface 
normal (S) according to the following formulas. 

    N1 = IOR of the original medium 
    N2 = IOR of the new medium 
    N = N1 / N2 

    C1 = ‐dot(S, D) 
    C2 = sqrt(1 – N

2 * (1 – C1
2)) 

    R = (N * D) + (N * C1 – C2) * S 

 

 

Figure 6: Refraction of light through a glass sphere with 
index of refraction 1.3 

6 Motion Blur 

Motion blur is the apparent blurring of objects that 
move in a still image. In order to implement motion 
blur we needed to add a velocity component to each 
object, and a time component to each ray. Using these 
additionally fields, we could sample an image over 
time. To control the quality of the motion blur we 
added a parameter specifying the number of temporal 
samples to use per pixel.  Figure 7 shows the motion 
blur algorithm using only 5 samples. With such a low 
sample count, the various time samples can be easily 
distinguished. Figure 8 shows the same render using 
50 samples, which exhibits the blurring effect in 
higher detail. Using more samples is unnecessary; 
little more detail is shown. 

 

Figure 7: Render showing motion blur using 5 temporal 
samples. 

 

Figure 8: Render showing motion blur using 50 temporal 
samples. 



7 Glossy Reflections 

Glossiness is an optical property of a material’s 
surface which measures the roughness of the object’s 
surface. When rays reflect off the surface, the mirror 
angles are perturbed by the roughness, causing a blur 
in the reflection. To simulate this effect, we averaged 
the color of multiple reflection ray coming off the 
surface at relatively random angles. In order to 
determine the range of these angles, we first followed 
a ray in the perfect mirror direction from the glossy 
sphere. After following the ray one unit from the 
sphere’s surface, we create a new sphere. We then cast 
rays from the glossy sphere to randomly chosen points 
on this new sphere. The radius of this sphere will 
determine how glossy the reflection looks because as 
the sphere’s radius increases, the range of angles 
increases. Additionally, more samples should be used 
as the radius increases to improve the blur quality.  

See figure 9 for an image representation of this 
algorithm. 

 

Figure 9: Illustration of the glossy reflection algorithm. 

 

 

Figure 10: Render of a sphere with a 50% glossy surface. 

8 Depth of Field 

Depth of field is distinction in sharpness of objects 
which are at different distances from the camera. The 
camera uses a near and far plane in order to create the 
depth of field effect. All of the rays shot out from the 
camera intersect the near plane, where the severity of 
the effect is determined. We modeled the near plane 
using a similar technique as the glossy reflection 
algorithm. By placing an imaginary sphere centered at 
the intersection of the ray and the near plane, we can 
vary the amount of blur by casting new rays from 
random points on this sphere. We cast rays from these 
new points on the sphere in the direction of the 
intersection between the original ray and the sharp 
plane. The distance to the sharp plane (focal length) 
determines which portion of the scene is in focus. 
Figure 11 demonstrates this algorithm visually. 

 

Figure 11: Visual representation of the depth of field 
algorithm. 

In our implementation, we allow the user to vary the 
focal length (distance to the sharp plane) and the blur 
radius, which determines the severity of the blur for 
objects out of focus. Additionally, the user can specify 
the number of rays per sample for the depth of field 
effect. Figure 12 shows an example of depth of field in 
which the sphere is the focal point of the image.

 

Figure 12: Example rendering of the depth of field effect 
using 100 samples per pixel. 



8 Results 

 

Figure 13: Adaptive antialiasing algorithm. Comparison of 
off (a) and on (b). 

 

Figure 14: Refraction algorithm. Comparison of index of 
refraction: 1.01 (a), 1.1 (b), 1.2 (c), 1.3 (d), 1.4 (e), and 1.5 (f). 

 

Figure 15: Glossy reflection algorithm. Comparison of glossy 
values: 0.1 (a), 0.25 (b), 0.5 (c), and 1.0 (d). 

 

Figure 16: Depth of field algorithm. Comparison of focal 
lengths: 15.0 (a), 20.0 (b), 25.0 (c), 30.0 (d), 35.0 (e), 40.0 
(f), 45.0 (g), and 50.0(h). 

9 Conclusion 

We successfully implemented all of our planned 
features. Some of the features, primarily depth of field 
and motion blur, were quite computationally 
expensive, but our goal was not to make these 
algorithms as efficient as possible; our goal was 
simply to make them work and render some good 
looking images. 
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