A GPU Accelerated Volumetric Ray Tracer for Incandescent Gas

Andrew Zonenberg, Sylvia Forrest
Rensselaer Polytechnic Institute
110 8th Street
Troy, New York U.S.A. 12180

zonena@cs.rpi.edu,

forres3@rpi.edu

May 5, 2011

1 Introduction

The initial goal of this project was to create a physi-
cally accurate GPU-accelerated simulation of fire. Due
to limited time available in the semester (combined with
the inherent difficult of debugging CUDA code) we ended
up reducing the scope somewhat and focusing on a realis-
tic GPU-accelerated technique for rendering incandescent
gas, as in flames, without doing a full fluid simulation.

The application was written in C (GPU code) and C++
(CPU code) and tested on a laptop running 64-bit Linux
with a GTX 460m card.

2 Related work

[1] lays out a basic algorithm for volumetric ray trac-
ing: it renders a given volume based on local data spec-
ified at each voxel within the volume without the use of
geometric primitives. In his method, voxels are treated as
samples on a continuous function for color/opacity, and
the specific values at a point are derived with local op-
erators. Front-to-back eye rays are modeled as vectors
of color/opacity values sampled from a given number of
evenly spaced points along the ray. These sample values,
in turn, are created from a trilinear interpolation of the
locally derived values from the 8 voxels surrounding the
one which the ray is passing through. The final returned
from a given eye ray is the composite of all the values
in the vector, combined with a completely opaque bac-

ground. Optimization is achieved by stopping eye rays
once a high enough opacity value is encountered, and by
hierarchical spatial enumeration.

Another early paper on the matter, [2] presents an al-
ternative method which combines volumetric rendering
with standard ray tracing in which geometric primitives
are used. Local volumetric information is not specified
everywhere. Ray-object intersections are handled in a va-
riety of ways, depending on user specifications for the
scene and the actual data/objects involved in the intersec-
tion. The intersections are either point or segment inter-
sections, and optimization is achieved by sorting calcu-
lations by closeness of intersection points to the camera
(in rays where there is point intersection, only the closest
one to the camera and all segments in front of it need be
evaluated).

3 Raytracing algorithm

While [2]’s model is more comprehensive, we were not
planning to use any geometric primitives or multiple com-
plex effects, so we used a method more like [1]. We used
a slightly different method for antialiasing which did not
require us to sample around each point the way that [1]
does - taking a large number of samples at sub-voxel spac-
ing (our current implementation typically uses 0.25 or 0.5
voxels) along the ray. This method appeared to provide
better cache locality, which is critical given the massive
memory bandwidth used by such an algorithm.

4 Blackbody rendering

[3] describes a method for accurately simulating the
color and flow of fire, and its interaction with different
kinds of fuels, backgrounds, and other objects. The fire
is modeled with an implicit surface representing the blue
core of the flame, blackbody radiation, and soot/smoke,
using Navier-Stokes incompressible flow equations to
mimic the movement of the flame. We were primarily
concerned with the blackbody radiation aspect of this,
which creates accurately colored fire for a full spectrum.
Very simply, Planck’s formula is used to produce a spec-
trum in XYZ colorspace, which is then converted to RGB.
A Von Kries transformation can be applied to adjust the
colors such that the highest temperature becomes the
white point for the output render.

Our blackbody rendering algorithm is largely based on
[4], with additional information and conversion values
taken from [5]. For a given voxel, we compute a spec-
trum of blackbody emission values based on the voxel’s
temperature (Kelvin) and wavelengths between 380 nm
and 650 nm, at 15 nm intervals, using Planck’s formula:

01)_5

e
where L.(T,)\) is light emitted at wavelength A by a

blackbody at T degrees Kelvin, cl = 3.74183E-16, and
cl = 1.4388E-2.

Lo(T,)) =

The emitted light is then multiplied by a set of 3 CIE
conversion factors from a lookup table in order to create
an X, y, and z value for that wavelength. Optionally, we
account for sodium in the fuel (which would create the fa-
miliar oranges and yellows of fire) by adding an extra call
to the spectrum evaluator at 590 nm (the closest value in
our lookup table to sodium’s D-lines, which are at 588.6
nm and 589 nm), and scaling that by a sodium percentage
value. We then obtain a single (X,y,z) chromaticity value
for the voxel like so:
r=X/(X+Y +2)
y=Y/(X+Y +2)
2=Z/(X+Y +7Z)
where X, Y, and Z are the separate summations of x, y, and
z values returned from each wavelength in the spectrum.

Given more time the same method could be used for
visually accurate rendering of other heated gases, by in-
putting the spectrum of each gas into a table and having
voxel properties contain the fraction of each gas.

The conversion from perceptual (x,y,z) colorspace to
computer (r,g,b) colorspace is achieved by multiplication
by a set of constant values which mimic a Von Kries
transformation calibrated for the SRGB white point. Ad-
justments are then made to make sure the values are
non-negative and the magnitude is normalized, at which
point they are scaled by the blackbody intensity. (Ac-
tual blackbody radiation intensity is proportional to the
fourth power of the absolute temperature, however ren-
dering this proved impossible due to the limited dynamic
range of computer monitors. After some experimenting
we found that an exponent of 1.5 produced believable val-
ues with a more manageable dynamic range.) During the
volume rendering, these values are summed along the ray
(as floating-point numbers) and capped at 255.

With more time, we would have implemented the
pressure-based heat flow as in [3]; however as that was
not our priority and we were short on time, we used sev-
eral (much simpler) time-varying models for our example
renders.

5 GPU implementation

CUDA presents a SIMT (single instruction multiple
thread) parallel programming model in which multiple
threads execute the same kernel function. The threads are
grouped into blocks of user-defined size (up to hardware
limits such as number of registers); a grid of one or more
blocks is then launched on the card. Thread and block IDs
are 3-vectors (often, but not always, used to define points
in some sort of 2- or 3-dimensional space).

Each thread block is mapped to one fairly wide (16-
or 32-way) SIMD processor on the GPU; if more blocks
than processors are requested then not all blocks will ex-
ecute simultaneously. (The ordering of blocks in this sit-
uation is undefined; the programmer is expected to de-
sign code with no inter-block sequencing dependencies.)

Each thread in the block is mapped to one SIMD unit of
the processor; as with blocks if more threads than SIMD
units are requested they are executed in an undefined or-
der. All threads are given the opportunity to execute one
instruction before the next instruction is run; this permits
local barrier synchronizations to be performed between
all threads in the block.

Each SIMD processor in current CUDA GPUs is
equipped with 16KB of shared memory to be used by
the threads for communication and storage of frequently
used data, 16KB of dedicated L1 cache, and 32KB of fast
SRAM which may be configured as either L1 cache or
shared memory (but not both simultaneously). Cards be-
fore the GTX 4xx / Tesla C2xxx series lack the L1 cache
and extra memory, featuring only the 16KB of shared
memory.

Our raytracer uses one screen pixel per thread, and cur-
rently runs with 256 threads per block and one scanline
per grid. (This does not fully load GPus with more than
8 SIMD processors; for debugging the improved response
time and ability to interrupt a render after a single scanline
was considered more valuable than performance. Our de-
sign could easily be optimized to reduce kernel-call over-
head by rendering ten or fifteen scanlines per grid.)

The kernel then computes a ray from the eye to the de-
sired pixel position and traces it through the volume until
the far clip plane is reached. Sub-voxel sampling (spac-
ings of 0.25 and 0.5 were used for most of the example
renders) is used to produce smoother results.

6 Results and conclusion

Progress on the project was slow as only one of us
(Andrew) had any prior experience with CUDA develop-
ment, or even a CUDA-capable machine to test on. This
was made worse by the lack of memory protection or
the other niceties of protected-mode operation on a GPU.
On several occasions an infinite loop was created in the
raytracer, causing the affected machine to become com-
pletely unresponsive and require a hard reset. (This is
not too unusual for low-level GPU work; the price paid

for improved runtime performance is massively increased
development time!)

Figure 1: First test render (before blackbody implementa-
tion)

Our early test renders (see Fig. 1) consisted of a cu-
bic volume with a hard-coded color as we did not have
the blackbody coloring working yet. This image used an
extremely wide field of view, hence the fish-eye effect on
the corners. The cause of the artifacts at left is currently
unknown.

Figure 2: First blackbody test render

The next sample image (see Fig. 2) was a roughly
spherical volume of a transparent blackbody material
(such as soot particles in air) heated to around 3000K.
Note saturation of intensity at center of image. (We had

considered HDR rendering techniques but did not have References

adequate time to implement them.)

Figure 3: Frame 104 of video sequence

Figure 4: Frame 105 of video sequence

The next test was a 250-frame video sequence depicting
an extremely hot planar object (around 10,000 K) moving
at high speed through an air-filled volume. Gas touching
the object becomes heated, and gradually cools off as the
heat is removed. (The simulation here was not physically
accurate as the focus was on rendering volumes of heated
gas; the simulation was simply a means of producing data
to render.)

This last render (completed the day before the paper
was due) uncovered a bug in the raytracer whose cause
remains unknown. Once the leftmost column of voxels
has cooled to below some threshold a strange triangular
artifact appears (starting at frame 105). The same issue
can be seen on the right side of the volume.

[1] Mark Levoy, “Efficient Ray Tracing of Volume
Data”, 1995

[2] Lisa M. Sobierajski, Arie E. Kaufman, “Volumetric
Ray Tracing”, 1995

[3] Duc Quang Nguyen et al, “Physically Based Model-
ing and Animation of Fire” , 2002

[4] John Walker, “Colour Rendering of Spectra”, 1996

[5] Bruce Lindbloom, “Useful Color Equations”, 2009.
Available HTTP: http://www.brucelindbloom.com/

