

Topics for the Semester

- Meshes
- representation
- simplification
- subdivision surfaces
- construction/generation
- volumetric modeling
- Simulation
- particle systems, cloth
- rigid body, deformation
- wind/water flows
- collision detection
- weathering
- Rendering
- ray tracing, shadows
- appearance models
- local vs. global illumination
- radiosity, photon mapping, subsurface scattering, etc.
- procedural modeling
- texture synthesis
- non-photorealistic rendering
- hardware \& more ..

Mesh Simplification

Hoppe "Progressive Meshes" SIGGRAPH 1996

Mesh Generation \& Volumetric Modeling

Cutler et al., "Simplification and Improvement of Tetrahedral Models for Simulation" 2004

Modeling - Subdivision Surfaces

Fluid Dynamics

Foster \& Mataxas, 1996

"Visual Simulation of Smoke" Fedkiw, Stam \& Jensen SIGGRAPH 2001

Syllabus \& Course Website

http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/s11/

- Which version should I register for?
- CSCI 6530 : 3 units of graduate credit
- CSCI 4530 : 4 units of undergraduate credit
(same lectures, assignments, quizzes, \& grading criteria)
- This is an intensive course aimed at graduate students and undergraduates interested in graphics research, involving significant reading \& programming each week. Taking this course in a 5 course overload semester is discouraged.
- Other Questions?

Introductions - Who are you?

- name
- year/degree
- graphics background (if any)
- research/job interests
- something fun, interesting, or unusual about yourself

What is a Transformation?

- Maps points (x, y) in one coordinate system to points $\left(x^{\prime}, y^{\prime}\right)$ in another coordinate system

$$
\begin{aligned}
& x^{\prime}=a x+b y+c \\
& y^{\prime}=d x+e y+f
\end{aligned}
$$

- For example, Iterated Function System (IFS):

Participation/Laptops in Class Policy

- Use of laptops for reference during paper discussion and general note-taking is allowed.
- Participation is $\mathbf{1 5 \%}$ of your grade: So, if your focus is mostly on your laptop and you rarely speak up in class, you will get a zero for participation.

Outline
 - Course Overview
 - Classes of Transformations
 - Representing Transformations
 - Combining Transformations
 - Orthographic \& Perspective Projections
 - Example: Iterated Function Systems (IFS)
 - OpenGL Basics

Simple Transformations

Identity

Translation

- Can be combined
- Are these operations invertible?

Yes, except scale $=0$

Rigid-Body / Euclidean Transforms

Outline

- Course Overview
- Classes of Transformations
- Representing Transformations
- Combining Transformations
- Orthographic \& Perspective Projections
- Example: Iterated Function Systems (IFS)
- OpenGL Basics

General (Free-Form) Transformation

- Does not preserve lines
- Not as pervasive, computationally more involved

Fig 1. Undelormed Plastic
Fig 2. Deformed Plastic

Sederberg and Parry, Siggraph 1986

How are Transforms Represented?

$$
\begin{aligned}
x^{\prime} & =a x+b y+c \\
y^{\prime} & =d x+e y+f \\
\binom{x^{\prime}}{y^{\prime}} & =\left(\begin{array}{ll}
a & b \\
d & e
\end{array}\right]\left(\begin{array}{l}
x \\
y
\end{array}\right]+\left(\begin{array}{l}
c \\
f
\end{array}\right] \\
p^{\prime} & =M p+t
\end{aligned}
$$

Translation in homogeneous coordinates

Homogeneous Coordinates

- Most of the time $w=1$, and we can ignore it

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{llll}
a & b & c & d \\
e & f & g & h \\
i & j & k & l \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)
$$

- If we multiply a homogeneous coordinate by an affine matrix, w is unchanged

Translate (t_{x}, t_{y}, t_{z})	
- Why bother with the extra dimension? Because now translations can be encoded in the matrix!	
$\left(\begin{array}{c}x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ 1\end{array}\right)=\left(\begin{array}{llll}1 & 0 & 0 & t_{x} \\ 0 & 1 & 0 & t_{y} \\ 0 & 0 & 1 & t_{z} \\ 0 & 0 & 0 & 1\end{array}\right)$	

Homogeneous Visualization

- Divide by w to normalize (homogenize)
- $\mathrm{W}=0$? Point at infinity (direction)

Scale ($s x, s y, s z$)

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{cccc}
S_{x} & 0 & 0 & 0 \\
0 & S_{y} & 0 & 0 \\
0 & 0 & S_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right)
$$

Storage

- Often, w is not stored (always 1)
- Needs careful handling of direction vs. point
- Mathematically, the simplest is to encode directions with $w=0$
- In terms of storage, using a 3-component array for both direction and points is more efficient
- Which requires to have special operation routines for points vs. directions

How are transforms combined?

Scale then Translate

Use matrix multiplication: $\mathrm{p}^{\prime}=\mathrm{T}(\mathrm{S} p)=\mathrm{TS} \mathrm{p}$

$$
T S=\left(\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
2 & 0 & 3 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

Caution: matrix multiplication is NOT commutative!

Outline

- Course Overview
- Classes of Transformations
- Representing Transformations
- Combining Transformations
- Orthographic \& Perspective Projections
- Example: Iterated Function Systems (IFS)
- OpenGL Basics

Non-commutative Composition

Scale then Translate: $\mathrm{p}^{\prime}=\mathrm{T}(\mathrm{Sp})=\mathrm{TS} \mathrm{p}$

Translate then Scale: $\mathrm{p}^{\prime}=\mathrm{S}(\mathrm{T} p)=\mathrm{ST} \mathrm{p}$

Non-commutative Composition

Scale then Translate: $\mathrm{p}^{\prime}=\mathrm{T}(\mathrm{S} p)=\mathrm{TS} \mathrm{p}$

$$
T S=\left(\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
2 & 0 & 3 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

Translate then Scale: $\mathrm{p}^{\prime}=\mathrm{S}(\mathrm{T} p)=\mathrm{ST} \mathrm{p}$

$$
S T=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
2 & 0 & 6 \\
0 & 2 & 2 \\
0 & 0 & 1
\end{array}\right)
$$

Orthographic vs. Perspective

- Orthographic

- Perspective

Simple Perspective Projection

- Project all points along the z axis to the $z=d$ plane, eyepoint at the origin:

Simple Orthographic Projection

- Project all points along the z axis to the $z=0$ plane

$$
\left(\begin{array}{l}
x \\
y \\
0 \\
1
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)
$$

Alternate Perspective Projection

- Project all points along the z axis to the $z=0$ plane, eyepoint at the $(0,0,-d)$:

Outline

- Course Overview
- Classes of Transformations
- Representing Transformations
- Combining Transformations
- Orthographic \& Perspective Projections
- Example: Iterated Function Systems (IFS)
- OpenGL Basics

Assignment 0: OpenGL Warmup

- Get familiar with:
- C++ environment
- OpenGL
- Transformations
- simple Vector \& Matrix classes
- Have Fun!
- Due ASAP (start today?)
- $1 / 4$ of the points of the other HWs (but you should still do it and submit it!)

Outline	
- Course Overview	
- Classes of Transformations	
- Representing Transformations	
- Combining Transformations	
- Orthographic \& Perspective Projections	
- Example: Iterated Function Systems (IFS)	
- OpenGL Basics	

OpenGL Basics: Transformations

- Useful commands:
glMatrixMode (GL_MODELVIEW) ;
glPushMatrix() ;
glPopMatrix();
glMultMatrixf(...);

For Next Time:

- Read Hugues Hoppe "Progressive Meshes" SIGGRAPH 1996
- Post a comment or question on the course WebCT/LMS discussion by 10am on Friday 1/29

