Rigid Body Dynamics, Fracture, & Deformation

Announcements: Quiz

- On Friday (3/4), in class
- One 8.5x11 sheet of notes allowed
- Sample quiz (from last year) is posted online
- Focus on "reading comprehension" and material for Homeworks 0, 1, & 2

Last Time? • Keyframing • Procedural Animation • Physically-Based Animation • Forward and Inverse Kinematics • Motion Capture

Today

- Rigid Body Dynamics
- Finite Element Method
- Deformation
- · Fracture

Total Energy = Kinetic Energy + Potential Energy + Rotational Energy Total Energy stays constant if there is no damping and no friction http://www.myphysicslab.com/collision.html Energy & Rigid Body Collisions Energy + Potential Energy + Potential Energy procediate energy | Total Energy | Total Energy | Total Energy | Total Energy | procediate memory | Total Energy | procediate memory | Total Energy | Tota

Today

- · Rigid Body Dynamics
- Finite Element Method
- Deformation
- Fracture

Simulation of Non-Rigid Objects

- We modeled string & cloth using mass-spring systems. Can we do the same?
- Yes...
- But a more physically accurate model uses *volumetric elements:*

Today

- Rigid Body Dynamics
- Finite Element Method
- Deformation
- Fracture

Some Definitions

- *Isotropic*: is a property which does not depend on the direction.
- Anisotropic: is a property which is directionally dependent.

Some Definitions

- Elastic Deformation: Once the forces are no longer applied, the object returns to its original shape.
- Plastic Deformation: An object in the plastic deformation range will first have undergone elastic deformation, which is reversible, so the object will return part way to its original shape.

http://en.wikipedia.org/wiki/Image:Stress-strain1.png

Some Definitions

- Degenerate/Ill-conditioned Element: a.k.a. how "equilateral" are the elements?
 - Ratio of volume² to surface area³
 - Smallest solid angle
 - Ratio of volume to volume of smallest circumscribed sphere

Some Definitions

- Tension: The direction of the force of tension is parallel to the string, away from the object exerting the stretching force.
- Compression: resulting in reduction of volume

http://www.aero.polimi.it/~merlini/ SolidMechanics-FiniteElasticity/CompressionBlock.jpg

Reading for Today:

· James O'Brien & Jessica Hodgins "Graphical Modeling and Animation of Brittle Fracture" SIGGRAPH 1999.

- Fracture threshhold
- · Remeshing
 - need connectivity info!
- Material properties
- · Parameter tuning

Fracture Opening Modes

Figure 6: Three loading modes that can be experienced by a crack. Mode I: Opening, Mode II: In-Plane Shear, and Mode III: Out-of-Plane Shear. Adapted from Anderson [1].

Local Mesh Refinement

O'Brien et al. 1999

Readings for Tuesday 3/1: (read both)

- "An improved illumination model for shaded display" Turner Whitted, 1980.
- "Distributed Ray Tracing", Cook, Porter, & Carpenter, SIGGRAPH 1984.

