

Announcements: Quiz

- On Friday (3/4), in class
- One 8.5×11 sheet of notes allowed
- Sample quiz (from last year) is posted online
- Focus on "reading comprehension" and material for Homeworks $0,1, \& 2$

Today

- Ray Casting
- Ray-Plane Intersection
- Ray-Sphere Intersection
- Point in Polygon
- Ray Tracing
- Recursive Ray Tracing
- Distribution Ray Tracing

Durer's Ray Casting Machine

- Albrecht Durer, $16^{\text {th }}$ century

A Note on Local Shading

- Surface/Scene Characteristics:
- surface normal
- direction to light
- viewpoint
- Material Properties
- Diffuse (matte)
- Specular (shiny)
- More later!

Diffuse sphere

Specular spheres

Ray Representation?

- Two vectors:
- Origin
- Direction (normalized is better)
- Parametric line (explicit representation)
$-\mathrm{P}(\mathrm{t})=$ origin $+\mathrm{t} *$ direction

Explicit vs. Implicit?

- Ray equation is explicit $\mathrm{P}(\mathrm{t})=\mathrm{R}_{\mathrm{o}}+\mathrm{t} * \mathrm{R}_{\mathrm{d}}$
- Parametric
- Generates points
- Harder to verify that a point is on the ray
- Plane equation is implicit $H(P)=n \cdot P+D=0$
- Solution of an equation
- Does not generate points
- Verifies that a point is on the plane

Ray-Plane Intersection

- Intersection means both are satisfied
- So, insert explicit equation of ray into implicit equation of plane $\&$ solve for t

Additional Housekeeping

- Verify that intersection is closer than previous

$$
\mathrm{P}(\mathrm{t})<\mathrm{t}_{\text {current }}
$$

- Verify that it is not out of range (behind eye)

Normal

- Needed for shading
- diffuse: dot product between light and normal
- Normal of a plane is constant!

Ray-Triangle Intersection

- Use barycentric coordinates:
$-\mathrm{P}(\alpha, \beta, \gamma)=\alpha \mathrm{a}+\beta \mathrm{b}+\gamma \mathrm{c}$ with $\alpha+\beta+\gamma=1$
- If $0<\alpha<1 \quad \& \quad 0<\beta<1 \quad \& \quad 0<\gamma<1$ then the point is inside the triangle!

Using Cramer's Rule...

- Used to solve for one variable at a time in system of equations

β	{fe784c5e6-439a-468d-9156-566f190a7198}$a_{x}-b_{x}$ $a_{x}-R_{o x}$ $R_{d x}$ $a_{y}-b_{y}$ $a_{y}-R_{o y}$ $R_{d y}$ $a_{z}-b_{z}$ $a_{z}-R_{o z}$ $R_{d z}$ \right\rvert\,}$\|A\|$
t	$=\frac{\left\|\begin{array}{lll}a_{x}-b_{x} & a_{x}-c_{x} & a_{x}-R_{o x} \\ a_{y}-b_{y} & a_{y}-c_{y} & a_{y}-R_{o y} \\ a_{z}-b_{z} & a_{z}-c_{z} & a_{z}-R_{o z}\end{array}\right\|}{\|A\|} \quad$$\mid$ denotes the determinant
Can be copied mechanically into code	

Ray-Sphere Intersection

- Insert explicit equation of ray into implicit equation of sphere \& solve for t

$$
\mathrm{P}(\mathrm{t})=\mathrm{R}_{\mathrm{o}}+\mathrm{t}^{*} \mathrm{R}_{\mathrm{d}} \quad \mathrm{H}(\mathrm{P})=\mathrm{P} \cdot \mathrm{P}-\mathrm{r}^{2}=0
$$

$$
\left(R_{o}+t R_{d}\right) \cdot\left(R_{o}+t R_{d}\right)-r^{2}=0
$$

$$
R_{d} \cdot R_{d} t^{2}+2 R_{d} \cdot R_{o} t+R_{o} \cdot R_{o}-r^{2}=0
$$

Ray-Sphere Intersection

Questions?

- Quadratic: $\mathrm{at}^{2}+\mathrm{bt}+\mathrm{c}=0$
$-\mathrm{a}=1 \quad$ (remember, $\left\|\mathrm{R}_{\mathrm{d}}\right\|=1$)
$-\mathrm{b}=2 \mathrm{R}_{\mathrm{d}} \cdot \mathrm{R}_{\mathrm{o}}$
$-\mathrm{c}=\mathrm{R}_{\mathrm{o}} \cdot \mathrm{R}_{\mathrm{o}}-\mathrm{r}^{2}$
- with discriminant $d=\sqrt{b^{2}-4 a c}$
- and solutions $\quad t_{ \pm}=\frac{-b \pm d}{2 a}$
- What does it mean if there are no solutions, 1 solution, or 2 solutions?

Today

- Ray Casting
- Ray Tracing
- Shadows
- Reflection
- Refraction
- Recursive Ray Tracing
- Distribution Ray Tracing

How Can We Add Shadows?

Find the point to be shaded
For every light,
Construct ray from point to light
For every object
find intersection of ray with object
If no objects between point and light Add contribution from light

Reflection

- Reflection angle $=$ view angle
- $\mathbf{R}=\mathbf{V}-2(\mathbf{V} \cdot \mathbf{N}) \mathbf{N}$

Transparency

- Cast ray in refracted direction
- Multiply by transparency coefficient (color)

Refraction \& the Sidedness of Objects

- Make sure you know whether you're entering or leaving the transmissive material:

Qualitative Refraction

From "Color and Light in Nature" by Lynch and Livingston

- What about intersecting transparent objects?

Questions?

Readings for Today: (read both)

- "An improved illumination model for shaded display" Turner Whitted, 1980.
- "Distributed Ray Tracing", Cook, Porter, \& Carpenter, SIGGRAPH 1984.

The Ray Tree

Ray Debugging

- Visualize the ray tree for single image pixel

Today

- Ray Casting
- Ray Tracing
- Recursive Ray Tracing
- Distribution Ray Tracing

Today

- Ray Casting
- Ray Tracing
- Recursive Ray Tracing
- Distribution Ray Tracing
- Soft shadows
- Antialiasing (getting rid of jaggies)
- Glossy reflection
- Motion blur
- Depth of field (focus)

Ray Tracing Algorithm Analysis

- Ray casting
- Lots of primitives
- Recursive
- Distributed Ray Tracing Effects
- Soft shadows
- Anti-aliasing
- Glossy reflection
- Motion blur
- Depth of field

Reading for Tuesday 3/8:

- Goral, Torrance, Greenberg \& Battaile "Modeling the Interaction of Light Between Diffuse Surfaces", SIGGRAPH '84

Post a comment or question on the LMS discussion by 10am on Friday 2/29

