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The Rendering Equation 
& Monte Carlo Ray Tracing 

Raytracing & Epsilon 

intersects sphere2  
@ t = 0.01 

intersects sphere1  
@ t = -0.01 

Image from Zachary Lynn 

intersects sphere1  
@ t = 10.6 

intersects sphere2  
@ t = 14.3 

intersects light  
@ t = 25.2 

intersects light  
@ t = 26.9 

eye 
Solution:  advance the ray start position epsilon 
distance along the ray direction OR ignore all 
intersections < epsilon (rather than < 0) 

What’s a good value for epsilon?  Depends on 
hardware precision & scene dimensions 

Last Time? 
•  Local Illumination 

– BRDF 
–  Ideal Diffuse Reflectance 
–  Ideal Specular Reflectance 
– The Phong Model 

•  Radiosity Equation/Matrix 
•  Calculating the Form Factors 

A i 

A j 

Today 
•  Does Ray Tracing Simulate Physics? 
•  The Rendering Equation 
•  Monte-Carlo Integration 
•  Sampling 
•  Monte-Carlo Ray Tracing vs. Path Tracing 

Does Ray Tracing Simulate Physics? 
•  No…. traditional ray tracing is also called 

“backward” ray tracing 
•  In reality, photons actually travel from the light 

to the eye 

Forward Ray Tracing 
•  Start from the light source 

– But very, very low probability to reach the eye 
•  What can we do about it? 

– Always send a ray to the eye…. still not efficient 
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Transparent Shadows? 
•  What to do if the shadow ray sent to the light source 

intersects a transparent object? 
–  Pretend it’s opaque? 
–  Multiply by transparency color?   

(ignores refraction & does not produce caustics)  

•  Unfortunately, ray tracing is full of dirty tricks  

Is this Traditional Ray Tracing? 

•  No,  Refraction and complex reflection for illumination are not 
handled properly in traditional (backward) ray tracing 

Images by Henrik Wann Jensen 

Refraction and the Lifeguard Problem 

•  Running is faster than swimming  
Beach 

Person  
in trouble 

Lifeguard 
Water 

Run 

Swim 

Today 
•  Does Ray Tracing Simulate Physics? 
•  The Rendering Equation 
•  Monte-Carlo Integration 
•  Sampling 
•  Monte-Carlo Ray Tracing vs. Path Tracing 

The Rendering Equation 
•  Clean mathematical framework for light-

transport simulation 
•  At each point, outgoing light in one direction 

is the integral of incoming light in all directions 
multiplied by reflectance property 

The Rendering Equation 

L (x',ω') is the radiance from a point  
on a surface in a given direction ω' 

x' 

ω' 

L(x',ω') = E(x',ω') + ∫ρx'(ω,ω')L(x,ω)G(x,x')V(x,x') dA 
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The Rendering Equation 

E(x',ω') is the emitted radiance  
from a point: E is non-zero only  
if x' is emissive (a light source) 

x' 

ω' 

L(x',ω') = E(x',ω') + ∫ρx'(ω,ω')L(x,ω)G(x,x')V(x,x') dA 

The Rendering Equation 

Sum the contribution from all of  
the other surfaces in the scene 

x' 

ω' 

L(x',ω') = E(x',ω') + ∫ρx'(ω,ω')L(x,ω)G(x,x')V(x,x') dA 

The Rendering Equation 

For each x, compute L(x, ω), the radiance 
at point x in the direction ω (from x to x')  

x' 

ω' 
ω 

x 

L(x',ω') = E(x',ω') + ∫ρx'(ω,ω')L(x,ω)G(x,x')V(x,x') dA 

The Rendering Equation 

scale the contribution by 
ρx'(ω,ω'), the reflectivity 

(BRDF) of the surface at x' 

x' 

ω' 

L(x',ω') = E(x',ω') + ∫ρx'(ω,ω')L(x,ω)G(x,x')V(x,x') dA 

ω 
x 

The Rendering Equation 

For each x, compute V(x,x'),  
the visibility between x and x':   

1 when the surfaces are unobstructed  
along the direction ω,  0 otherwise  

x' 

ω' 
ω 

x 

L(x',ω') = E(x',ω') + ∫ρx'(ω,ω')L(x,ω)G(x,x')V(x,x') dA 

The Rendering Equation 

For each x, compute G(x, x'), which 
describes the on the geometric relationship 

between the two surfaces at x and x’ 

x' 

ω' 
ω 

x 

L(x',ω') = E(x',ω') + ∫ρx'(ω,ω')L(x,ω)G(x,x')V(x,x') dA 
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Intuition about G(x,x')?  
•  Which arrangement of two surfaces will yield the 

greatest transfer of light energy?  Why? 

Rendering Equation  Radiosity 

L(x',ω') = E(x',ω') + ∫ρx'(ω,ω')L(x,ω)G(x,x')V(x,x') dA 

    Bx'   =    Ex'   +     ρx' ∫         Bx    G(x,x')V(x,x') 

Radiosity assumption:  
perfectly diffuse surfaces (not directional) 

∑ + = 
j=1 

j ij i i i B F E B ρ 
n 

discretize 

•  “The Rendering Equation”, Kajiya, SIGGRAPH 1986 

Reading for Today: Today 
•  Does Ray Tracing Simulate Physics? 
•  The Rendering Equation 
•  Monte-Carlo Integration 

– Probabilities and Variance 
– Analysis of Monte-Carlo Integration 

•  Sampling 
•  Monte-Carlo Ray Tracing vs. Path Tracing 

Monte-Carlo Computation of π 
•  Take a random point (x,y) in unit square 
•  Test if it is inside the ¼ disc   

–  Is x2 + y2  < 1? 
•  Probability of being  

inside disc?  
–  area of ¼ unit circle / 

area of unit square 
= π /4   

•  π ≈ 4 * number inside disc / total number 
•  The error depends on the number or trials 

Convergence & Error 
•  Let’s compute 0.5 by flipping a coin: 

– 1 flip: 0 or 1  
→ average error = 0.5 

– 2 flips: 0, 0.5, 0.5 or 1  
→ average error = 0. 25 

– 4 flips: 0 (*1),0.25 (*4), 0.5 (*6), 0.75(*4), 1(*1)  
→ average error = 0.1875 

•  Unfortunately, doubling the number of samples  
does not double accuracy 
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Another Example: 

•  We know it should be 1.0 

•  In practice 
with uniform  
samples: 

N 

σ2

- σ2 

error 

Review of (Discrete) Probability 
•  Random variable can take discrete values xi 
•  Probability pi for each xi 

0 < pi < 1,   Σ pi =1 

•  Expected value 

•  Expected value of function of random variable 
–  f(xi) is also a random variable 

Variance & Standard Deviation 
•  Variance σ 2:   deviation from expected value 
•  Expected value of square difference 

•  Also 

•  Standard deviation σ:  
square root of variance (notion of error, RMS) 

Monte Carlo Integration 
•  Turn integral into finite sum 
•  Use n random samples 
•  As n increases… 

– Expected value remains the same 
– Variance decreases by n 
– Standard deviation (error) decreases by 

•  Thus, converges with  

Advantages of MC Integration 
•  Few restrictions on the integrand 

– Doesn’t need to be continuous, smooth, ... 
– Only need to be able to evaluate at a point 

•  Extends to high-dimensional problems 
– Same convergence  

•  Conceptually straightforward 
•  Efficient for solving at just a few points 

Disadvantages of MC Integration 
•  Noisy 
•  Slow convergence  
•  Good implementation is hard 

– Debugging code 
– Debugging math 
– Choosing appropriate techniques 

•  Punctual technique, no notion of smoothness  
of function (e.g., between neighboring pixels) 
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Questions? 

256 glossy  
samples  
per pixel 

1 glossy  
sample  

per pixel 

Today 
•  Does Ray Tracing Simulate Physics? 
•  The Rendering Equation 
•  Monte-Carlo Integration 
•  Sampling 

– Stratified Sampling 
–  Importance Sampling 

•  Monte-Carlo Ray Tracing vs. Path Tracing 

Domains of Integration 
•  Pixel, lens (Euclidean 2D domain) 
•  Time (1D) 
•  Hemisphere 

– Work needed to ensure uniform probability 

Example: Light Source 
•  We can integrate over surface or over angle 
•  But we must be careful to get probabilities and 

integration measure right! 

source 

hemisphere 

Sampling the source uniformly Sampling the hemisphere uniformly 

Stratified Sampling 
•  With uniform sampling, we can get unlucky 

– E.g. all samples in a corner 

•  To prevent it, subdivide domain Ω  
into non-overlapping regions Ωi 
– Each region is called a stratum 

•  Take one random samples per Ωi 

Stratified Sampling Example 

Unstratified Stratified 

Slide from Henrik Wann Jensen 
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Sampling 
uniform sampling 

(or uniform random) 
dense sampling where  

function has greater magnitude 

all samples  
weighted equally 

weights (width) for dense  
samples are reduced 

sensitive to choice 
of samples 

less sensitive 
to choice of 

samples 

uniform bad good 

Importance Sampling 

•  Choose p wisely to reduce variance 
– Want to use a p that resembles f 
– Does not change convergence rate (still sqrt) 
– But decreases the constant 

Uniform vs. Importance Sampling 

5 Samples/Pixel 

Slide from Jason Lawrence 

Uniform vs. Importance Sampling 

25 Samples/Pixel 

Slide from Jason Lawrence 

Uniform vs. Importance Sampling 

75 Samples/Pixel 

Slide from Jason Lawrence 
Veach & Guibas "Optimally Combining Sampling  

Techniques for Monte Carlo Rendering”  SIGGRAPH 95 

Naïve sampling strategy Optimal sampling strategy 

Questions? 
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•  "A Theoretical Framework for Physically Based 
Rendering", Lafortune and Willems, Computer Graphics 
Forum, 1994. 

Reading for Today: Today 
•  Does Ray Tracing Simulate Physics? 
•  The Rendering Equation 
•  Monte-Carlo Integration 
•  Sampling 
•  Monte-Carlo Ray Tracing & Path Tracing 

Ray Casting 
•  Cast a ray from the eye through each pixel  

Ray Tracing 
•  Cast a ray from the eye through each pixel  
•  Trace secondary rays (light, reflection, refraction) 

Monte-Carlo Ray Tracing 
•  Cast a ray from the eye through each pixel 
•  Cast random rays to accumulate radiance contribution 

–  Recurse to solve the Rendering Equation 

Should also  
systematically  

sample the  
primary light 

Importance of Sampling the Light 
Without explicit  
light sampling 

With explicit  
light sampling 

1 path per pixel 

4 path per pixel 
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Monte Carlo Path Tracing 
•  Trace only one secondary ray per recursion 
•  But send many primary rays per pixel 

(performs antialiasing as well) 

Ray Tracing vs Path Tracing 
2 bounces 
5 glossy samples  
5 shadow samples 

How many rays cast per pixel? 

1main ray + 5 shadow rays + 
5 glossy rays + 5x5 shadow rays + 
5*5 glossy rays + 5x5x5 shadow rays  
= 186 rays 

How many 3 bounce paths can we trace 
per pixel for the same cost? 

186 rays / 8 ray casts per path  
= ~23 paths 

Which will probably have less error? 

Questions? 

10 paths/pixel 100 paths/pixel 

Images from Henrik Wann Jensen 

•  “Rendering Caustics on Non-Lambertian Surfaces”,  
Henrik Wann Jensen, Graphics Interface 1996. 

•  “Global Illumination using Photon Maps”,  
Henrik Wann Jensen, Rendering Techniques 1996. 

Readings for Tuesday (3/22) pick one: 


