Irradiance Caching & Photon Mapping

Today

- Irradiance Caching
- Photon Mapping
- Acceleration Data Structures
- Ray Grammar

Indirect Illumination: smooth

Irradiance Cache

- The indirect illumination is smooth
- Store the indirect illumination

Irradiance Cache

- Interpolate nearby cached values
- But do full calculation for direct lighting

Irradiance Cache

Questions?

- Why do we need "good" random numbers?
 - With a fixed random sequence, we see the structure in the error

Today

- Irradiance Caching
- Photon Mapping
- Acceleration Data Structures
- Ray Grammar

• "Rendering Caustics on Non-Lambertian Surfaces", Henrik Wann Jensen, Graphics Interface 1996.

"Global Illumination using Photon Maps", Henrik Wann Jensen, Rendering Techniques 1996.

Photon Mapping

• Preprocess: cast rays from light sources - independent of viewpoint

Photon Mapping

- Store photons
 - position + light power + incoming direction

Photon Map

- Efficiently store photons for fast access
- Use hierarchical spatial structure (kd-tree)

Rendering with Photon Map

- · Cast primary rays
- For secondary rays
 - reconstruct irradiance using k closest photons
- Combine with irradiance caching and other techniques

Photon Map Results

Regular Grid Discussion

- Advantages?
 - easy to construct
 - easy to traverse
- Disadvantages?
 - may be only sparsely filled
 - geometry may still be clumped

Adaptive Grids · Subdivide until each cell contains no more than n elements, or maximum depth d is reached Nested Grids Octree/(Quadtree)

Variations of Adaptive Grids

- When to split? When a cell contains "lots" of geometry, but has not yet reached the max tree depth
- Where to split?
- · Quadtree/Octree: split every dimension in half, always axis aligned
- kd-tree: choose one dimension (often the largest dimension) and split it axis aligned (but not necessarily at the midpoint)
- Binary Space Partition (BSP): choose a arbitrary cut plane
- Which one is best? It depends.... Often they are all equally good!

Adaptive Grid Discussion • Advantages? - grid complexity matches geometric density • Disadvantages? more expensive to traverse (binary tree, lots of pointers)

Bounding Volume Hierarchy

- Find bounding box of objects
- Split objects into two groups
- Recurse

Where to split objects?

- At midpoint OR
- Sort, and put half of the objects on each side OR
- · Use modeling hierarchy

Intersection with BVH

· Check sub-volume with closer intersection first

Bounding Volume Hierarchy Discussion

- Advantages
 - easy to construct
 - easy to traverse
 - binary
- Disadvantages
 - may be difficult to choose a good split for a node
 - poor split may result in minimal spatial pruning

Oriented Bounding Box (OBB)

• Generalization of the (axis-aligned) BVH

OBB-Tree: A Hierarchical Structure for Rapid Interference Detection, Gottschalk, Lin, & Manocha, SIGGRAPH 1996.

Today

- Irradiance Caching
- Photon Mapping
- Acceleration Data Structures
- Ray Grammar

