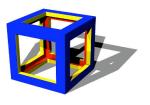


Today

- Why are Shadows Important?
- Planar Shadows
- Projective Texture Shadows
- Shadow Maps
- Shadow Volumes

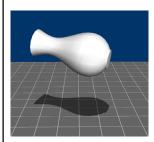
Why are Shadows Important?

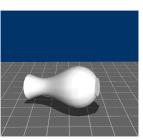
- Depth cue
- Scene Lighting
- Realism
- Contact points



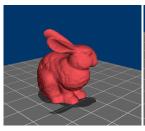
Shadows as a Depth Cue

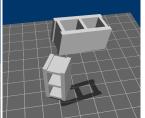
For Intuition about Scene Lighting • Position of the light (e.g. sundial) • Hard shadows vs. soft shadows • Colored lights • Directional light vs. point light


Today


- Why are Shadows Important?
- Planar Shadows
- Projective Texture Shadows
 - Shadow View Duality
 - Texture Mapping
- Shadow Maps
- Shadow Volumes

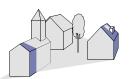
Cast Shadows on Planar Surfaces


• Draw the object primitives a second time, projected to the ground plane



Limitations of Planar Shadows

• Does not produce self-shadows, shadows cast on other objects, shadows on curved surfaces, etc.


Shadow/View Duality

• A point is lit if it is visible from the light source

 Shadow computation similar to view computation

Texture Mapping

• Don't have to represent everything with geometry

Fake Shadows using Projective Textures

- · Separate obstacle and receiver
- Compute b/w image of obstacle from light
- Use image as projective texture for each receiver

Image from light source

Figure from Moller & Haines "Real Time Rendering

Projective Texture Shadow Limitations

- Must specify occluder & receiver
- · No self-shadows
- Resolution

Figure from Moller & Haines "Real Time Rendering

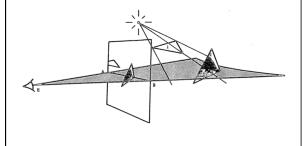
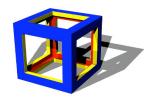

Questions?

Plate 52 Grandville, The Shadows (The French Cabinet) from La Caricature, 1830.

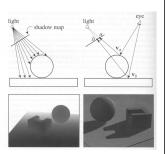

Reading for Today:

• "Shadow Algorithms for Computer Graphics", Frank Crow, SIGGRAPH 1977

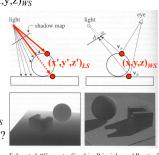
Today

- Why are Shadows Important?
- Planar Shadows
- Projective Texture Shadows
- Shadow Maps
- Shadow Volumes

Shadow Maps

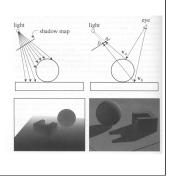

- In Renderman
 - (High-end production software)

Shadow Mapping

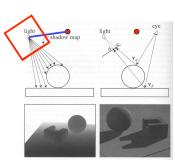

- Texture mapping with depth information
- Requires 2 passes through the pipeline:
 - Compute shadow map (depth from light source)
 - Render final image, check shadow map to see if points are in shadow

Foley et al. "Computer Graphics Principles and Practice"

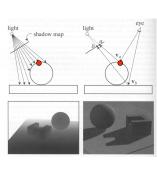
Shadow Map Look Up


- We have a 3D point $(x,y,z)_{WS}$
- How do we look up the depth from the shadow map?
- Use the 4x4 perspective projection matrix from the light source to get $(x',y',z')_{LS}$
- ShadowMap(x',y') < z'?

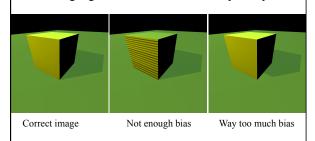
Foley et al. "Computer Graphics Principles and Practic


Limitations of Shadow Maps

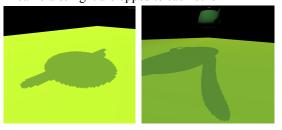
- 1. Field of View
- 2. Bias (Epsilon)
- 3. Aliasing


1. Field of View Problem

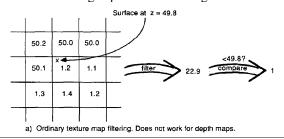
- What if point to shadow is outside field of view of shadow map?
 - Use cubical shadow map
 - Use only spot lights!


2. The Bias (Epsilon) Nightmare

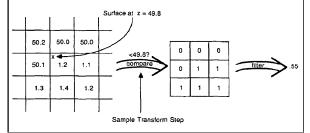
- For a point visible from the light source ShadowMap $(x',y') \approx z^2$
- · How can we avoid erroneous self-shadowing?
 - Add bias (epsilon)


2. Bias (Epsilon) for Shadow Maps

ShadowMap(x',y') + bias < z'Choosing a good bias value can be very tricky


3. Shadow Map Aliasing

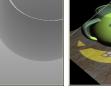
- Under-sampling of the shadow map
- Reprojection aliasing especially bad when the camera & light are opposite each other


3. Shadow Map Filtering

- Should we filter the depth? (weighted average of neighboring depth values)
- No... filtering depth is not meaningful

3. Percentage Closer Filtering

- Instead filter the result of the test (weighted average of comparison results)
- · But makes the bias issue more tricky

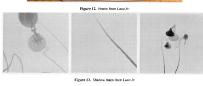

3. Percentage Closer Filtering

- 5x5 samples
- Nice antialiased shadow
- Using a bigger filter produces fake soft shadows
- Setting bias is tricky

Projective Texturing + Shadow Map

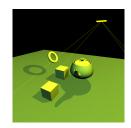
Light's View

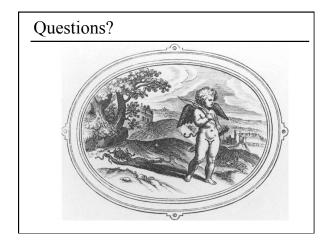
Depth/Shadow Map


Eye's View

Images from Cass Everitt et al., "Hardware Shadow Mapping" NVIDIA SDK White Paper

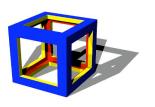
Shadows in Production

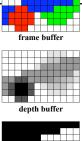

- Often use shadow maps
- Ray casting as fallback in case of robustness issues



Hardware Shadow Maps

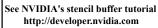
- Can be done with hardware texture mapping
 - Texture coordinates u,v,w generated using 4x4 matrix
 - Modern hardware permits tests on texture values

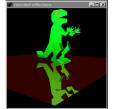



Today

- Why are Shadows Important?
- · Planar Shadows
- Projective Texture Shadows
- · Shadow Maps
- Shadow Volumes
 - The Stencil Buffer

Stencil Buffer

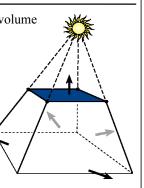

- Tag pixels in one rendering pass to control their update in subsequent rendering passes
 - "For all pixels in the frame buffer" \rightarrow "For all tagged pixels in the frame buffer"
- Can specify different rendering operations for each case:
 - stencil test fails
 - stencil test passes & depth test fails
 - stencil test passes & depth test passes

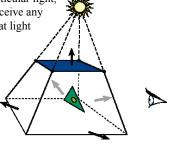


Stencil Buffer – Real-time Mirror

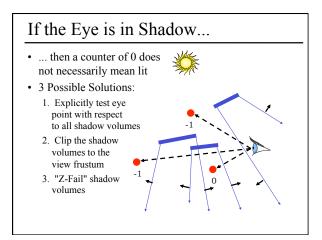
- · Clear frame, depth & stencil buffers
- Draw all non-mirror geometry to frame & depth buffers
- Draw mirror to stencil buffer, where depth buffer passes
- Set depth to infinity, where stencil buffer passes
- Draw reflected geometry to frame & depth buffer, where stencil buffer passes

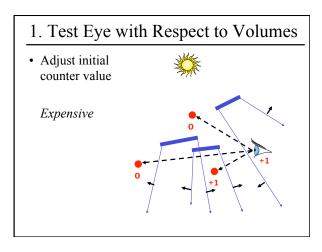
also discusses blending, multiple mirrors, objects behind mirror, etc...

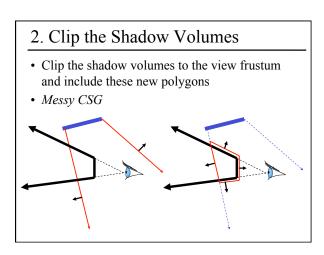


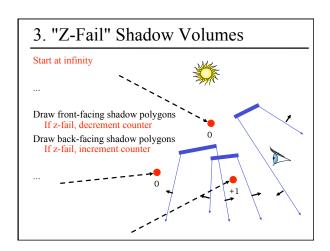

Shadow Volumes

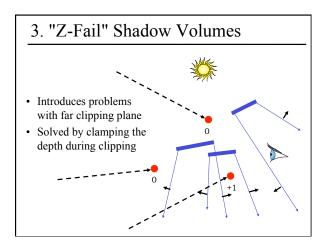
- Explicitly represent the volume of space in shadow
- For each polygon
 - Pyramid with point light as apex
 - Include polygon to cap
- Shadow test similar to clipping

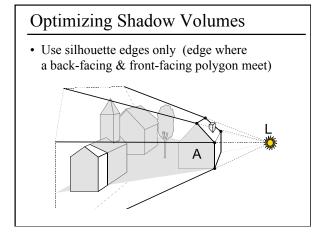

Shadow Volumes


- If a point is inside a shadow volume cast by a particular light, the point does not receive any illumination from that light
- Cost of naive implementation: #polygons * #lights




Shadow Volumes • Shoot a ray from the eye to the visible point • Increment/decrement a counter each time we intersect a shadow volume polygon (check z buffer) • If the counter ≠ 0, the point is in shadow





Limitations of Shadow Volumes

- Introduces a lot of new geometry
- Expensive to rasterize long skinny triangles
- Limited precision of stencil buffer (counters)
 - for a really complex scene/object, the counter can overflow
- Objects must be watertight to use silhouette trick
- Rasterization of polygons sharing an edge must not overlap & must not have gap

Questions?

• From a previous quiz: Check the boxes to indicate the features & limitations of each technique

Features / Limitations	Planar Fake Shadows	Projective Texture Shadows	Shadow Maps	Shadow Volumes	Ray Casting Shadows
Allows objects to cast shadows on themselves (self shadowing)					
Permits shadows on arbitrary surfaces (i.e. curved)					
Renders geometry from the viewpoint of the light					
Generates extra geometric primitives					
Limited resolution of intermediate representation can result in jaggie shadow artifacts					

Reading for Friday: • Chris Wyman, "An Approximate Image-Space Approach for Interactive Refraction", SIGGRAPH 2005