
1

Programmable GPUS

Last Time?
•  Planar Shadows
•  Projective Texture

Shadows
•  Shadow Maps
•  Shadow Volumes

– Stencil Buffer

frame buffer

depth buffer

stencil buffer

Today
•  Modern Graphics Hardware
•  Shader Programming Languages
•  Gouraud Shading vs. Phong Normal

Interpolation
•  Bump, Displacement, & Environment Mapping

Modern Graphics Hardware
•  High performance through

–  Parallelism
–  Specialization
–  No data dependency
–  Efficient pre-fetching

G

R

T

F

D

G

R

T

F

D

G

R

T

F

D

G

R

T

F

D

task
parallelism

data parallelism

Programmable Graphics Hardware
•  Geometry and pixel (fragment) stage

become programmable
– Elaborate appearance
– More and more general-purpose

computation (GPU hacking)

G
P

R

T

F
P

D

Misc. Stats on Graphics Hardware
•  2005

–  About 4-6 geometry units
–  About 16 fragment units
–  Deep pipeline (~800 stages)
–  600 million vertices/second
–  6 billion texels/second

•  NVIDIA GeForce 9 (Feb 2008)
–  ~1 TFLOPS
–  32/64 stream processors
–  512 MB/1GB memory

•  ATI Radeon R700 (2008)
–  480 stream processing units

•  NVIDIA® GeForce® GTX 480 (2010)
–  480 cores
–  2560x1600 resolution
–  1536 MB memory

2

Today
•  Modern Graphics Hardware
•  Shader Programming Languages
•  Gouraud Shading vs. Phong Normal

Interpolation
•  Bump, Displacement, & Environment Mapping

Emerging Languages
•  Inspired by Shade Trees [Cook 1984] &

Renderman Shading Language:
– RTSL [Stanford 2001] – real-time shading language
– Cg [NVIDIA 2003] – C for graphics
– HLSL [Microsoft 2003] – Direct X
– GLSL [OpenGL ARB 2004] – OpenGL 2.0

•  General Purpose GPU computing
– CUDA [NVIDIA 2007]
– OpenCL (Open Computing Language) [Apple 2008]

for heterogeneous platforms of CPUs & GPUs

Cg Design Goals
•  Ease of programming
•  Portability
•  Complete support for hardware functionality
•  Performance
•  Minimal interference with application data
•  Ease of adoption
•  Extensibility for future hardware
•  Support for non-shading uses of the GPU

“Cg: A system for programming graphics
hardware in a C-like language”

Mark et al. SIGGRAPH 2003

Cg Design
•  Hardware is changing rapidly…

no single standard
•  Specify “profile” for each hardware

– May omit support of some language capabilities
(e.g., texture lookup in vertex processor)

•  Use hardware virtualization or emulation?
–  “Performance would be so poor it would

be worthless for most applications”
– Well, it might be ok for general purpose

programming (not real-time graphics)

Cg compiler vs. GPU assembly
•  Can inspect the assembly language produced by

Cg compiler and perform additional
optimizations by hand
– Generally once development is complete

(& output is correct)
– Using Cg is easier than writing GPU

assembly from scratch

(Typical) Language Design Issues
•  Parameter binding
•  Call by reference vs. call by value
•  Data types: 32 bit float, 16 bit float, 12 bit fixed

& type-promotion (aim for performance)
•  Specialized arrays or general-purpose arrays

–  float4 x vs. float x[4]
•  Indirect addressing/pointers (not allowed…)
•  Recursion (not allowed…)

3

GLSL example: checkerboard.vs GLSL example: checkerboard.fs

Today
•  Modern Graphics Hardware
•  Shader Programming Languages
•  Gouraud Shading vs. Phong Normal

Interpolation
•  Bump, Displacement, & Environment Mapping

Remember Gouraud Shading?
•  Instead of shading with the normal of the triangle,

shade the vertices with the average normal and
interpolate the color across each face

Illusion of a smooth
surface with smoothly

varying normals

Phong Normal Interpolation
•  Interpolate the average vertex normals across

the face and compute per-pixel shading

(Not Phong Shading)

Must be
renormalized

Bump Mapping
•  Use textures to alter the surface normal

– Does not change the actual shape of the surface
–  Just shaded as if it were a different shape

Sphere w/Diffuse Texture Swirly Bump Map Sphere w/Diffuse Texture & Bump Map

4

Another GLSL example: orange.vs Another GLSL example: orange.fs

Bump Mapping
•  Treat the texture as a single-valued height function
•  Compute the normal from the partial derivatives in the

texture

Another Bump Map Example

Cylinder w/Diffuse Texture Map

Bump Map

Cylinder w/Texture Map & Bump Map

What's Missing?
•  There are no bumps on

the silhouette of a
bump-mapped object

•  Bump maps
don’t allow
self-occlusion
or self-shadowing

Displacement Mapping
•  Use the texture map to actually move the surface point
•  The geometry must be displaced before visibility is determined

5

Displacement Mapping

Image from:

Geometry Caching for
Ray-Tracing Displacement Maps

EGRW 1996
Matt Pharr and Pat Hanrahan

note the detailed shadows
cast by the stones

Ken Musgrave

Displacement Mapping

Environment Maps
•  We can simulate reflections by using the direction of the reflected

ray to index a spherical texture map at "infinity".
•  Assumes that all reflected rays

begin from the same point.

What's the Best Chart?

Environment Mapping Example

Terminator II

Texture Maps for Illumination

Quake

•  Also called "Light Maps"

6

Questions?

Image by Henrik Wann Jensen
Environment map by Paul Debevec

•  Chris Wyman,
"An Approximate
Image-Space
Approach for
Interactive
Refraction”,
SIGGRAPH 2005

Reading for Today:

Readings for Friday:
Choose:
•  “An Image Synthesizer”, Perlin,

SIGGRAPH 1985 & “Improving Noise”,
Perlin, SIGGRAPH 2002

•  “Parallel White Noise Generation
on a GPU via Cryptographic Hash”,
Tzeng & Wei, I3D 2008.

