Computational Photography

End of Semester

- Today is the last lecture of new material
- Quiz on Friday 4/29
 - Sample problems are posted on website
- Final Project Presentations Tues May 3rd, Fri May 6th, Tues May 10th
 - Attendance mandatory (please don't be late!)
 - No laptops allowed during your classmates' presentations
 - You will be giving each other written feedback & peer grade
 - Ask good questions (participation grade)
- Presentation 10pts (peers)
- Project Report 20pts (instructor)

Final Presentation

- · Summarize prior work as necessary
- You don't need to discuss papers we covered in classBe technical:
 - What were the challenges?
 - How did you solve them?
- Live demo / video / lots of images (depends on project)
 Use examples (both of success & failure)
- Teams of 2:
 - Both should present & make it clear who did what
- Practice! & time yourself!
 - We have a tight schedule
 - I will stop you midsentence if you run over

Tues May 3rd	Fri Mav 6 th	Tues May 10th
2:00 Evan &	2:00 Griff &	2:00 Mike A. &
Jay	Eric	Florian
2:25 Mike S.	2:25 Greg	2:25 James D.
2:40 Lore &	2:40 Ram &	2:40 Mark &
Mary	Pat	Justin
3:05 David	3:05 Jason	3:05 James Z.
3:20 Zach &	3:20 Andrew &	3:20 Tim &
Geoff	Sylvia	Mel
3:45 done!	3:45 done!	3:45 done!

Today

- Structure From Motion
- Multi-viewpoint Rendering
- Matting & Compositing
- Helmholtz Reciprocity
- Light Fields

Structure From Motion

- Input: Sequence of frames (e.g., video) of a moving object (or moving camera)
- Output: Approximate geometry of object & camera pose for each frame
- How?
 - Automatically detect features in each frame
 - Determine correspondences between features
 - Infer camera calibration & object geometry
- Humans do it all the time... but it's a hard problem!

Today

- Structure From Motion
- Multi-viewpoint Rendering
- Matting & Compositing
- Helmholtz Reciprocity
- Light Fields

Multi-Viewpoint Panoramas

- Like many non-photorealistic rendering methods, this paper aims to mimic the style of a particular artist or style of art
- Well designed user interface:
 - Most components automated
 - User can adjust dominant plane, view selection, seams, & inpainting

Today

- Structure From Motion
- Multi-viewpoint Rendering
- Matting & Compositing
- Helmholtz Reciprocity
- Light Fields

Today

- Structure From Motion
- Multi-viewpoint Rendering
- Matting & Compositing
- Helmholtz Reciprocity
- Light Fields

Helmholtz Reciprocity

• BRDF is symmetric: % of light reflected from direction *i* off surface point *p* to direction *j* is the same as the % of light reflected from direction *j* off surface point *p* to direction *i*

Today

- Structure From Motion
- Multi-viewpoint Rendering
- Matting & Compositing
- Helmholtz Reciprocity
- Light Fields

Reading for Today:	"Coded Rolling Shutter Photography: Flexible Space-Time Sampling" Gu, Hitomi, Mitsunaga, & Nayar, ICCP 2010		
 Global Shutter vs. Rolling Shutter <i>plus</i> Coded Interlaced vs. Staggered Skew Compensation 			
 High Speed Photography Interpolation of High Resolution 			
 High Dynamic Range Adaptive Row-wise Auto Exposure 			
• Simulation → Prototype Camera Hardware			