
Edward Eisenberger Final Project Report Maria Montenegro

1

Simulating Smoke with an Octree Data Structure and Ray Marching

Edward Eisenberger Maria Montenegro

Abstract

We present a method for simulating and
rendering smoke using an Octree data
structure and Monte Carlo Ray tracing (ray
marching).

1 Introduction

We investigated the technical problem of
simulating and rendering compressible fluid,
in particular smoke. Our project was a two-
fold plan. We first implemented a three
dimensional particle system to model the
motion of smoke accurately. Second we

as the translucency, shadows, and color.

Simulating natural phenomena, such as
smoke, is a challenging problem in the
computer graphics field because they contain
complex and turbulent motions along with rich
visual detail. This becomes increasingly
difficult and expensive when interacting with
objects and on high resolution grids.

2 Related Work

Our project cemented its foundation by
merging two previous assignments from the
Advanced Computer Graphics course at
Rensselaer Polytechnic Institute, the fluid

 and Ray Tracing with a similar

3: Ray Tracing, Radiosity, & Photon

data structure for both simulating and
rendering particles following the model

Water and Smoke

2.1 Fluid Simulation

We kept the concept of representing smoke
as particles in a grid. Simulating the motion of
these particles is usually modeled in a
uniform grid using the Navier-Stokes
equations; however we chose to model the
motion of particles using Octrees as

2.2 Ray Tracing

We decided to expand our Hw 3 ray tracer by
including a ray marcher algorithm. When a
ray is cast through the media, we march
down the ray using equal size steps collecting
particles at each step to calculate the
radiance and scattering at that point.

3 Technical Details

Edward Eisenberger Final Project Report Maria Montenegro

2

In this section we describe the data structures
and algorithms implemented to make this
project possible.

3.1 Data Structures

To lay the framework, we utilized several data
structures from the Advanced Computer
Graphics course assignments, such as Vec3f,
Bounding Box, Edge, Face, Mesh, Ray, and
Ray Tracer. Then we updated these as well
as implemented several data structures to
approach this problem.

3.1.1 Bounding Box

We treat bounding boxes as cells. Each one
contains the u, v, and w face velocities as
well as pressure. The bounding box is the
building block for our entire scene. It creates
the space in which our particles move
around.

3.1.2 Octree

Figure 1 -­‐ Octree Visualization.

An Octree node is defined by a bounding
box, which provides the overall size, pointers
to each of its eight children, a split center,

and depth. We use the depth to ensure we do
not subdivide indefinitely. This data structure
contains all the necessary functions to add
and remove particles, merge children, split a
node and create its eight children, and a
cleanup method.

3.2 Algorithms

We implemented three main algorithms. The
first generates the scene and places the
particles. The second animates the particles
according to Navier-Stokes equations. And
the third renders the scene to show light
interacting with smoke particles.

3.2.1 Generating the Scene and Particles

Our program reads in two files, a text file
setting up the particle grid and an object file
which creates the meshes (lights, floor, walls,
etc.). The particle file declares a 3-space
coordinate which is the max of the scene. A
bounding box is then created from the origin
to this max point and is the first node of our
Octree and another boundingbox is created

and is used to keep particles from leaving our
grid. Next we initialize the particles with a few
set commands from the Fluid Simulation
assignment. Particles can start either
everywhere within the grid or in the bottom
left hand corner (0 <= y <= max_y, 0 <= x <=
max_x). Particles are then generated
according to these parameters specified and
are added to the Octree which then
subdivides accordingly. The Initial velocities
for the grid can be set to either zero or
random with the default set to zero. Lastly,
any specific velocities can be set with a
direction (u,v,w) at a particular position and a
magnitude of the velocity. These velocities
are then set to the cells in the Octree which
contain the position specified.

3.2.2 Animating the Particles

Edward Eisenberger Final Project Report Maria Montenegro

3

The algorithm for animating particles follows
the same general outline as the Fluid
Simulation assignment. Our function,
Animate(), is called in sets of 10 once
animation has been initialized. It computes
the new face velocities, sets the boundary
velocities, updates pressures, copies over the
new face velocities, moves the particles,
reassigns the particles to the Octree, sets
which cells in the Octree are empty, then
draws the scene.

The function to compute new velocities
contains the Navier-Stokes equations. We
traverse through the Octree using depth first
search and compute the new u face velocity.
We then traverse the Octree twice more,
once to compute the new v face velocity and
once to compute the new w face velocity.

The function SetBoundaryVelocities() simples
sets the grid face velocities to zero.

We update the pressure of each cell by using
a Depth First search of the Octree and
calculating the divergence at each node. The
values are all discretized to account for the
change in size of each cell. This is done by
multiplying the values of cells next to the one
we are currently looking at by the ratio of the
size of our current cell over the size of the
neighbor.

Once all of the values have been updated,
we move each particle. This is done by
another DFS through the Octree. At each
node, we collect all of the particles then
calculate the interpolated velocity at the

times the timestep.

We get the interpolated velocity by looking at
the cell which contains the point passed to us
and the appropriate neighbors. We determine
the neighbors in the same fashion as in the
Fluid Simulation assignment. The difference

comes into play with each of the values which
need to be discretized to account for the
changes in cell size.

Now that our particles have moved, we need
to reassign them to the Octree. We use yet
another DFS to traverse the tree. At each
node we collect all of the particles and for
each particle, we check if it is in the cell we
are currently looking at. If it is then we move
on, otherwise we remove it from that cell and
add back to the Octree which then filters it
down to the appropriate child cell. Once we
have traversed the entire Octree, we call the
cleanup routine.

Our cleanup routine is another DFS but
instead of stopping at nodes, we stop at each

king at is

particles is less than a specified threshold, we
merge the children. Otherwise we explore its
children.

The merge routine is simple. We collect all of
the particles, the face velocities, and
pressures of each child node then add all of it
to the parent and delete the children.

Once the tree has settled, we traverse the
octree once more. If a bottom node has no

otherwise full.

Now that the Octree has been taken care of,
we pass the information to our rendering
functions. These functions setup the
appropriate VBOs to render the particles,
octree, and scene.

Edward Eisenberger Final Project Report Maria Montenegro

4

Figure 2 -­‐ Octree Visualization with Face velocities after
initialization.

Figure 3 -­‐ Octree and Particle Visualization after several
time steps.

3.2.3 Rendering the Scene

Rendering participating media, in this case
smoke, is complex thanks to the amount of
detail that needs to be taking into account.
For this paper we used the Monte Carlo ray
tracing approach. Even though it suffers from
noise and is very computationally intensive, it

is straightforward to include surface
scattering and anisotropic phase functions.
The first step of our algorithm is ray
marching. This is needed to be able to
calculate the radiance in the media. The
second part of the algorithm is efficiently
calculating the radiance with single scattering
and multiple scattering. In this paper we are
only going to talk about single scattering.

3.2.1 Pre -Computation:

Before the scene is rendered, we go through
all the Octree pre-calculating the radiance
and transmittance of each bounding box with
respect to the light source for future use in
our inScattering calculation.

3.2.2 Ray Marching:

Ray marching consists of stepping through
the ray calculating the radiance at each point.
Before we start starting ray marching, we
send a ray to the scene to see if we hit
anything. If an object is hit, the first hit

red to
calculate the distance we are about to march.
With the distance calculated, the step size
can be computed. Usually the step size is

Edward Eisenberger Final Project Report Maria Montenegro

5

calculating by dividing the total distance by
the number of steps you want to do. This is
not the only way to do it; you can have a
random step size or a fit step size and
random number of steps too. In this paper
we are going to emphasize on equal step
sized down the ray. After testing the three
methods and getting similar results, we
realized that equal steps size worked better
for our particle gathering section.

We combined our ray marching
implementation with a type of photon
mapping, but instead of collecting photons we
collect particles. We also set a required
number of particles that have to be collected
at each step to compute the radiance. When
marching down the ray, we use a cylinder to
represent the size of the volume we are
marching down. The cylinder has a fixed
width (our step size) and a random radius
that will vary depending how many particles
we need to collect. At each step, we gather
the particles that are inside our cylinder with
the use of our OCTree. If the number of
particles that we need to gather is not
matched, we increase the size of our radius
and repeat until we have collected the
necessary amount of particles inside of our
cylinder. Once we have the right amount, we
start calculating the radiance.

3.2.2 Calculating the Radiance and Single
Scattering:

To calculate the radiance at a point in the ray,
we use the Radiative Transport Equation,
where L is the radiance arriving at that point
with direction w, s is depth of the media
where we are (our step down the ray), T is
the transmittance , sigma_s is the scattering

coefficient and Li is the inScattering radiance
at that point.

When solving for L(x,w), we first find the
transmittance at point x (point where we are
in the ray), which is basically a fraction of light
transported a certain distance down the ray.

Once we have T, we solve the inscattering
radiance. The inscattering radiance is the
sum of the single scattering and the multiple
scattering. In this paper we only solve for the
single scattering equation where p is the
phase function, Lr is the reduced radiance, V
is the visible function and H is the geometry
term.

In this paper we assumed our media was
isotropic, making our phase function a

Given that we are ray marching down the ray,
we use the Monte Carlo equation to solve for
the integration. For this we need to compute
the probability of distribution function (pdf)
and cycle through every face in the scene to
be able to calculate our variables.

Edward Eisenberger Final Project Report Maria Montenegro

6

After cycling for every face, we also compute
internal scattering created by the light source
inside the media. To calculate it we march
from the point we are at towards the light,
until we are out of the media. At each step,
we calculate the transmittance at that point.
Once we are out, we multiply the new
transmittance by the light source and add this
internal scattering to our Ls.

To accommodate for the particle gathering
and radius increase, we cycle through all the
particles collected, gathering there
transmittance and radiance with the use of
the pre-computed information. At this stage
we apply a Gaussian blur filter. Then we
divided by the density of the cylinder and add
it to our final radiance.

Once we are done ray marching, we multiple
our final L by the width of the step to account
for the march and add it to the pixel color.

Figure 4:Smoke with Single Scattering

3.2 Core Features

The core features of our project are the
accurate simulation of compressible particles
and the rendering of smoke particles. Our
main contribution to the simulation, and most
difficult aspect, was the Octree
implementation.

3.3 Challenges

We faced many challenges along the way.
Implementing the Octree with all of the proper
methods needed for an accurate ray tracer as
well rendering smoke in general proved to be
quite challenging.

3.3.1 Able to Overcome

One major challenge was implementing an
Octree that constantly adapts. Creating the
initial Octree was simple, requiring only the
abilities to both add a particle and split a cell.
Once particles began moving it became
apparent that we needed to consider merging
children which required the ability to remove
particles. Merging children was a challenge
and led to many memory leaks since we deal

Edward Eisenberger Final Project Report Maria Montenegro

7

with pointers. The most difficult portion was
solving the Navier-Stokes equations with
varying sizes of cells. Discretizing each cell
by multiplying the neighbor the size of the
original cell divided by the size of the
neighboring cell solved the issues with getting
the interpolated velocities as well as
computing the new Velocity.

3.3.2 Failed to Overcome

The Octree failed in two aspects, calculating
pressure and removing sinks/sources.
Discretizing worked for both computing the
new velocity as well as the interpolated
velocity but the pressure still has a tendency
to explode after several steps. Particles also
have a tendency to sink to one of the corners
of the box after many time steps.

4. Results

Given the challenges and setbacks
encountered, overall we were satisfied with
the results. Figures 5 through 8 show a
progression of our renderings.

Figure 5: First Smoke Renderings (1)

Figure 6: Smoke with Incorrect Scattering

Figure 7 -­‐ Smoke in Cornell Box, incomplete scattering

Edward Eisenberger Final Project Report Maria Montenegro

8

Figure 8: smoke with no scattering

Figure 9: Smoke with Scattering in room full of smoke

4.1 Who did what?

Ed implemented the octree data structure and
the simulation of smoke particles and
assisted with debugging for the rendering.

Maria implemented the Monte Carlo Ray
Tracing, ray marching, and rendering the
smoke.

5. Conclusions

In this paper, we modeled small scale smoke
scenes. However, we only implemented
single scattering and would like to extend this
application to include multi-scattering and fix
the lingering bugs with the Navier-Stokes
equations.

6. Bibliography

Fedkiw, Ronald, Jos Stam, and Henrik W.
Jensen. Visual Simulation of Smoke.
Tech. SIGGRAPH '01 Proceedings of the
28th Annual Conference on Computer
Graphics and Interactive Techniques.
Web. 29 Mar. 2012.
<http://dl.acm.org/citation.cfm?id=383260
>.

Losasso, Frank, Frederic Gibou, and Ron
Fedkiw. Simulating Water and Smoke
with an Octree Data Structure. Tech.
SIGGRAPH '04 ACM SIGGRAPH 2004
Papers. Web. 29 Mar. 2012.
<http://dl.acm.org/citation.cfm?id=101574
5>.

Lubich, Chistrian, and Alexander
Ostermann. Runge-Kutta Time
Discretization of Reaction-diffusion and
Navier-Stokes Equations" Nonsmooth-
data Error Estimates and Applications to
Long-time Behaviour. Tech. Applied
Numerical Mathematics 22. Web. 29 Mar.
2012.
<http://www.sciencedirect.com/science?_
ob=MiamiImageURL&_cid=271992&_use
r=659639&_pii=S0168927496000384&_c
heck=y&_origin=article&_zone=toolbar&_
coverDate=30-Nov-
1996&view=c&originContentFamily=serial
&wchp=dGLbVlS-
zSkWA&md5=7dfce92c2656f4ced963a19
7ac999ab0/1-s2.0-S0168927496000384-
main.pdf>.

Rasmussen, Nick, Duc Q. Nguyen, Willi Geiger,
and Ronald Fedkiw. Smoke Simulation for
Large Scale Phenomena. Tech.
SIGGRAPH '03 ACM SIGGRAPH 2003
Papers, July 2003. Web. 29 Mar. 2012.
<http://dl.acm.org/citation.cfm?id=882262.
882335>.

Shi, Lin, and Yizhou Yu. VISUAL SMOKE
SIMULATION WITH ADAPTIVE OCTREE
REFINEMENT. Tech. SIGGRAPH 01
Conference Proceedings. Web. 29 Mar.
2012.

Edward Eisenberger Final Project Report Maria Montenegro

9

<http://www.ann.jussieu.fr/~frey/papers/a
pplications/Shi%20L.,%20Visual%20smok
e%20simulation%20with%20adaptive%20
octree%20refinement.pdf>.

Jarosz, Wojciech, Craig Donner, Matthias Zwicker,
and Henrik W. Jensen. "Radiance Caching
for Participating Media." In ACM
Transactions on Graphics (Presented at
ACM SIGGRAPH 2008). ACM Transactions
on Graphics (Presented at ACM
SIGGRAPH 2008). Web. 3 May 2012.
<http://zurich.disneyresearch.com/~wjar
osz/publications/jarosz08radiance.html>.

7. APPENDIX A: Code

For complete code, please visit our public
repository on github at:

https://bergermeister@github.com/bergermei
ster/Smoke-Simulation.git

