
Methods For Better Color Tracking

As An Extension To The Human Paintbrush

Tyler Sammann∗

Rensselaer Polytechnic Institute

Abstract

The Human Paintbrush is an interactive piece made for two users;
one that gives instructions (the Painter), and one that receives and
attempts to follow instructions (the Human Paintbrush). The blind-
folded paintbrush receives instructions via sound, from eight sur-
rounding speakers. The painter controls these sound instructions,
attempting to influence the paintbrush’s movements in particular
ways. These movements, and other actions, are tracked, and are
converted into brush-strokes on a digital painting.

The project currently uses a GigEVision color camera, and tracks
the position of the paintbrush based on color (as the paintbrush
wears a blue Snuggie). The current method of color tracking is
very primitive and simple. A simple threshold for determining blue
is hand calibrated for the current space being tracked, but small
changes in the light source’s color and intensity have a signifi-
cant impact on the correctness of the threshold and accuracy of
the result. This paper discusses different methods of transforma-
tion of the original image in order to correct this problem. RG-
normalization is implemented to allow for color invariance given
different intensities of illumination. Two color constancy algo-
rithms are also implemented and compared to see which allows for
the least color variation given different colors of illumination. A
combination of normalization and color constancy is applied to cre-
ate a more robust color tracker that is more insensitive to changes
in room illumination, and requires less time for thresholding. This
paper also discusses different methods for blob detection as a form
of noise reduction. A bounding boxes algorithm, as well as a con-
nected components algorithm are implemented and tested.

Keywords: color tracking, color constancy, connected compo-
nents

1 Introduction

This project is based on communication between three separate pro-
grams. Both the sound and the entire interface for the painter were
created with a MaxMSP patch. A C++ program using the GigEVi-
sion SDK interfaces with the camera, and using a basic color track-
ing method, tracks the position of the paintbrush (who wears a blue
Snuggie). The MaxMSP program receives position data from this
program, allowing the painter to see the location of the paintbrush,
and allowing for the correct placement of sound in relation to the
paintbrush. A third program, written in C++ and OpenGL, receives
position and overall size data from the color tracking program, and
draws strokes on a glCanvas based on these parameters.

The stroke’s base color is determined directly by the painter in the
MaxMSP interface, but the intensity of the color of the stroke, and
width of the stroke, is determined by the size of the paintbrush (i.e.
the total number of blue pixels found). The painter is in control
of the pitch and frequency of the sound via the MaxMSP interface,
and the paintbrush is instructed to hold their arms further out to the
side when the pitch and frequency of the sound becomes higher.
If the paintbrush’s arms are further apart, then the color tracking
program picks up more blue pixels from the sleeves of the Snuggie,

∗e-mail:sammat@rpi.edu

and the size parameter will be increased. A larger size parameter
will increase the width of the brush stroke, and the intensity of its
color. The painter is also in control of the direction of sound in
relation to the paintbrush. The paintbrush attempts to walk towards
the source of the sound, and this motion determines the path of
the brush stroke. In this configuration, the painter is only given
indirect control of what will be painted. The result is determined by
the creativity of the painter, the ability of the paintbrush to follow
the sound instructions, and the effectiveness of the communication
between them.

2 Previous Work

My own previous method for color tracking with The Human Paint-
brush project is handled by a simple and naive algorithm. It scans
all pixels in each frame, and for each pixel, it uses a threshold to
determine whether or not that pixel is blue. With this information,
a blob size and centroid are estimated. Size information is deter-
mined based on the number of blue pixels found. A centroid value
is then calculated by determining the average of the positions of
each blue pixel found.

Figure 1: Histogram debugging information: representing blue
pixels found with different thresholds applied. More red colors rep-
resent pixels which were blue for higher thresholds

This simple method proved to be effective for its purposes in a con-
trolled environment, but the threshold for blue pixels, which deter-
mined how much larger the blue value needed to be compared to the
red and green values, needed to be precisely set to ensure proper fil-
tering. It was also very delicate, and small changes in the intensity
and color of light in the room greatly affected the resulting number
and locations of blue pixels found in the frame. Noise in the filtered



frames can also cause problems with the centroid and size calcula-
tions. For the duration of this paper I will discuss methods which I
have implemented to attempt to correct these issues with my color
tracking algorithm for The Human Paintbrush.

3 Normalization

Normalization attempts to remove light source intensity from an
image or frame, and leave behind only relational color data. In
theory, after streaming video frames are normalized they will not be
affected by changes in light source intensity, and the video stream
will not vary because of the amount of light in the scene.

Figure 2: Canonical input frames adjusted with RG-
Normalization. Normalized images differ little, dispite the
large difference in light intensity between the two canonical
images.

RG-Normalization, discussed in [Buenaposada et al. 1999], is very
simple and works under the assumption that the total intensity for
each pixel in the frame is equal to the sum of its red, green, and
blue (r,g,b) components. This intensity value is first determined,
and then factored out for each of the color channels of each pixel.(1)
With this algorithm the resulting vector distance of the (r,g,b) values
will always be equal to 1, and hence normalized.

(R,G,B) = (
R

R+G+B
,

G

R+G+B
,

B

R+B +G
) (1)

As shown in Figure 2, Normalization on unprocessed images is not
always perfect. A large flaw with normalizing unprocessed images
is that the image or frame might be illuminated by light that is not
white. Different colored illumination will result in normalized im-
ages which don’t accurately account for white and grey colors, even
if the intensity of the light source doesn’t change. In this case, grey
colors have been assigned brown to red values.

4 Color Constancy (White Balance)

Color constancy algorithms are very popular in the computer vision
field and in photography in general. Most current digital cameras
have a setting for automatic white balance, and many algorithms
have been developed in order to solve the problem of non-white il-
lumination conditions. Most of these algorithms work by making
an assumption about the overall lighting. They then attempt to es-
timate the color of the light source, and finally scale the red, green,
and blue values for each pixel accordingly.

The Grey-World algorithm assumes that the average intensity for
each color channel in the frame will be the same. [Lam. 2005] It
determines the average intensity of each color channel in the frame
(2), and then diagonally scales the channels to ensure that the av-
erage intensity for each of them will be the same (3). The green
channel is usually chosen to be the referenced channel because hu-
mans perceive the color green more intensely than red or blue. Here
W is width, and H is the height of the input frame.

(Ravg, Bavg, Gavg) = (

∑
R

W ∗H
,

∑
G

W ∗H
,

∑
B

W ∗H
) (2)

R =
Gavg

Ravg

and B =
Gavg

Bavg

(3)

The Max-RGB algorithm works in very much the same way that
the Grey-World algorithm does, but it makes a different assumption
about the input frame. It ensures that the maximum value of inten-
sity for all the color channels in the input frame will be the same.
It determines the maximum intensity of each channel (4), and then
diagonally scales the channels for each pixel in the same way as the
Grey-World algorithm (5). [Lam. 2005]

(Rmax, Bmax, Gmax) = (MAX(R),MAX(G),MAX(B)) (4)

R =
Gmax

Rmax

and B =
Gmax

Bmax

(5)

As seen in Figure 3, when tested with input frames that have dif-
ferent colored lighting, the two algorithms both do a good job of
white balancing the images, but because the Grey-World algorithm
is more consistently colored between different lighting conditions,
and because it seems to balance to a more colorless white in my test
cases (Max-RGB results in slightly red hue), I chose it as my pri-
mary algorithm for attaining color constancy. After further testing
the algorithms, such as in Figure 6, it is shown that the best and most
stable results, in terms of my own test cases, for making frames
light color and light intensity invariant, is to first white balance with
the Grey-World algorithm, and then apply RG-Normalization.

After testing the color constancy and normalization algorithms, I
noticed that the results I got in terms of the calculation of the num-
ber of blue pixels, and the centroid of the blob (the paintbrush wear-
ing the blue Snuggie), were not better, or much different from the
results achieved through the naive approach using a properly and
precisely set threshold (in fact, some of the results were worse than
with the naive approach). The improvement was rather one of con-
sistency. The threshold used for the new approach was constant,
and because of the added preprocessing, this threshold was ade-
quate to achieve similar results between input frames with varying
lighting conditions.

5 Noise Removal

To further improve upon the color tracking method, I tested two dif-
ferent noise removal algorithms. The motivation for noise removal
comes from the fact that no threshold, despite preprocessing with
normalization and color constancy, will ever perfectly include ev-
ery pixel in the desired blob while excluding every pixel not found
in the desired blob. The methods currently used to remove noise do
so by blob tracking [Park et al. ], a method that involves identify-
ing and extracting certain regions of blue pixels within a blob, and



Figure 3: The Grey-World and Max-RGB color constancy algorithms, applied to input frames with lighting conditions which vary in both
color and intensity.

discarding all other blue pixels as noise. I implemented two dif-
ferent post processing algorithms to accomplish blob tracking; the
first method involves fitting a bounding box around a single blob,
and the second method, connected components, attempts to extract
regions with blue pixels that are next to each other (i.e. share a
face).

6 Bounding Box Approach

This algorithm is inspired by the general idea of bounding boxes
which, in a two-dimensional field, enclose a region of interest as
tightly as possible within a rectangular box. My algorithm makes
some assumptions about the incoming data. It assumes that the
centroid found with the naive algorithm is within the blob being
tracked, and that the point at the centroid is blue. Furthermore, it
currently only tracks one blob at a time, and assumes the centroid
of the blue pixels will land within the desired blob.

The algorithm functions by starting at the originally calculated cen-
troid pixel. If this pixel is blue, it will attempt to expand each of its
four box boundaries (on the top, right, bottom, and left sides) iter-
atively. Each directional boundary will only be allowed to advance
if it has not reached the frame’s edge, and if the line formed by the
boundary (side of the box, 1 pixel wide) contains at least one pixel
which is blue. The final boundaries will not include any blue pixels.
The pixels not found within the bounding box are discarded, and a
new centroid is calculated based only on the blue pixels within the
box.

Figure 4: Bounding Box Algorithm (pseudocode)

Given the appropriate conditions, this algorithm worked very well,
and relatively fast (between 20 and 30 frames per second). The
largest problem with using this algorithm is that it is not adaptive.
Given input that does not fit its specific needs causes it to fail en-
tirely. If there is too much noise in the input, the original centroid
may not lie within the blob. Similarly problematic is a blob whose
shape is such that its correct centroid lies outside of its colored area.
A good example might be a doughnut shaped blob, whose centroid
would lie on a non-blue pixel. In these cases, the sides of the box
would not advance and the blue pixels in the rest of the frame would
be incorrectly discarded.

I considered adding a case which would check for the color of the
initial centroid pixel, and if it was not blue, then it would expand
until blue is found, and proceed from this point until blue pixels are
no longer found. This may have improved the algorithm, but any
noise in the initial expansion would have resulted in another totally
incorrect bounding box.

7 Connected Components

The connected components algorithm is another blob tracking
method, but does not assume as many things about the input as
the bounding box algorithm does. It simply needs to be passed a
frame for which a threshold has already assigned pixels to be either
blue or not blue. The general principle for its operation is to loop
through every pixel in the frame, and if that pixel is blue, then a re-
cursive function is called and passed its location and a reference to
a data structure holding the pixel locations for the blob. This recur-
sive function starts at the given point, adds itself to the current blob,
and then calls itself for the pixels to the right, left, top, and bottom,
if those pixels are also blue. The recursion stops when there are no
more contiguous blue pixels. The blob with the most pixels is kept,
and all other blue pixels are discarded. The centroid and size of the
blob can then be more accurately calculated.

As seen in Figure 5, a debugging image shows the largest blobs
detected from a particular frame. The blobs are colored on a scale
from red, being the smallest of the depicted blobs, to blue, being
the largest blob in the frame. The image shows that the Snuggie
in the image, colored in blue, was correctly identified as the largest
blob, and will therefore be kept. Results for this method of noise
removal were far more reliable and accurate than with the bounding



Figure 5: Connected Components Algorithm: Run on a test scene
that had already been white balanced (Grey-World) and normalized
(RG-Normalization)

boxes method. It occasionally did not recognize the correct blob as
the largest blob, but this algorithm also has the advantage that it can
detect and track multiple blobs simultaneously, unlike the bounding
boxes algorithm.

8 Problems with Connected Components

The first downside of my connected components algorithm is the
fact that my algorithm is not stable because it hasn’t been fully de-
bugged. If the blob sizes change too much, then the program has
a tendency to crash. I used the color coded output to try to find
where the bugs in the code were, but the visible problems, if any,
were not obvious ones. The second downside that my algorithm
has is that it runs slowly. At first it was too slow to run even in in-
teractive time, and I made a few necessary adjustments to increase
its efficiency. The first involved creating a Boolean array to repre-
sent every pixel in the frame. Because each pixel can be in at most
one blob, once that pixel has been visited, it doesn’t ever need to
be visited again, and the Boolean array was used to identify which
pixels had and hadn’t been visited already. This change reduced the

running time by a factor of at least N size, where N is the number
of pixels in the frame. Another improvement I made to this algo-
rithm’s efficiency involved checking only the blue channel of each
pixel, rather than all three channels, because my processing before
guaranteed that the input frame would be either completely black
[0,0,0] or completely blue [0,0,1]. After my improvements were
added to the algorithm, it typically ran somewhere in the range of
5-10 frames per second.

9 Conclusion

In this paper I’ve described two methods for improving upon the
color tracking aspect of my already existing project The Human
Paintbrush. The first method involves preprocessing the input im-
age in order to make the thresholding process simpler, and the re-
sults more robust and constant given different illumination condi-
tions in the source frames. The algorithms I’ve implemented for
these purposes are the RG-Normalization algorithm, to reduce vari-
ance due to light intensity, and the Grey-World and Max-RGB al-
gorithms to reduce variance caused by light source color. Through
testing I determined the best combination of methods is a normal-
ization of an input which has already been white balanced with the
Grey-World algorithm.

The second aspect of improvement involved post-processing noise
removal. I implemented two algorithms to accomplish this goal.
My bounding box algorithm was effective, but made too many as-
sumptions to be a feasible solution for the project. The connected
components algorithm produced better results than the bounding
box algorithm, and with less assumptions made about the input, but
it was very slow and buggy. I added a few changes to the connected
components algorithm to make it run at interactive time.

I completed this project alone. The time spent on the color tracking
extensions to The Human Paintbrush was 50+ hours including the
time to test and document.

10 Future Work

I would like to spend more time with the connected components
algorithm to make sure that it is fully debugged. I would also like
to make it more efficient, and add accelerations to bring it into the
10-20 frames per second range. I would like to do more testing
with lighting conditions and my color constancy and normalization
methods to confirm their ability to create invariant results regardless
of illumination conditions. Finally, I would like to create a full
working version of The Human Paintbrush with the inclusion of
all these changes, and compare it to the previous naive version. A
more robust color tracker will allow me to install this project more
quickly, and in less controlled environments.

References

EDMUND Y. LAM. 2005. Combining Gray World and Retinex
Theory for Automatic White Balance in Digital Photography In
Proceedings of the Ninth International Symposium on Consumer
Electronics, 134–139.

JOS M. BUENAPOSADA, LUIS BAUMELA 1999. Variations
of Grey World for face tracking Universidad Politecnica de
Madrid, 1–12.

JUNG-ME PARK, CARL G. LOONEY, HUI-CHUAN CHEN . Fast
Connected Component Labeling Algorithm Using A Divide and
Conquer Techniqe University of Alabama, Tuscaloosa - Univer-
sity of Nevada, Reno, 1–4.



Figure 6: RG-Normalization applied to canonical, and white balanced test frames with lighting conditions which vary in both color and
intensity. Also included are examples of color constancy algorithms applied to normalized frames.


